Answer:
a) v1 = 5.52m/s
b) v2 = -1.52m/s
c) v3 = 4.62m/s
d) vt = 3.85m/s
Explanation:
The velocity of the football wide receiver is his displacement per unit time.
Velocity v = (displacement d)/time t
v = d/t .....1
For each of the cases, equation 1 would be used to calculate the velocity.
a) v1 = d1/t1
d1= 16m
t1 = 2.9s
v1 = 16m/2.9s
v1 = 5.52m/s
b) v2 = d2/t2
d2 = -2.5m
t2 = 1.65s
v2 = -2.5/1.65
v2 = -1.52m/s
c) v3 = d3/t3
d3 = 24m
t3 = 5.2s
v3 = 24/5.2
v3 = 4.62m/s
d) vt = dt/tt
dt = 16m - 2.5m + 24m = 37.5m
tt = 2.9 + 1.65 + 5.2 = 9.75s
vt = 37.5/9.75
vt = 3.85m/s
By Boyle's law:
P₁V₁ = P₂V₂
70*8 = P<span>₂*4
</span>P<span>₂*4 = 70*8
</span>
P<span>₂ = 70*8/4 = 140
</span>
P<span>₂ = 140 kiloPascals.</span>
The fourth dimension is technically time. the fourth dimension that you are talking about is actually impossible to comprehend.
Answer:
82.4 cm
Explanation:
The object and screen are kept fixed ie the distance between them is fixed and by displacing lens between them images are formed on the screen . In the first case let u be the object distance and v be the image distance
then ,
u + v = 184 cm
In the second case of image formation , v becomes u and u becomes v only then image formation in the second case is possible.
The difference between two object distance ie( v - u ) is the distance by which lens is moved so
v - u = 82.4 cm