Part 1:
After payment of $300, remaining balance = $2,348.62 - $300 = $2,048.62.
Interest accrued is given by:

Had it been $600 was paid, remaining balance = $2,348.62 - $600 = $1748.62. Interest accrued is given by:

Difference in interest accrued = $14.94 - $12.75 = $2.19
Part 2:
The present value of an annuity is given by:
![PV= \frac{P\left[1-\left(1+ \frac{r}{12} \right)^{-12n}\right]}{ \frac{r}{12} }](https://tex.z-dn.net/?f=PV%3D%20%5Cfrac%7BP%5Cleft%5B1-%5Cleft%281%2B%20%5Cfrac%7Br%7D%7B12%7D%20%5Cright%29%5E%7B-12n%7D%5Cright%5D%7D%7B%20%5Cfrac%7Br%7D%7B12%7D%20%7D)
Where PV is the amount to be repaid, P is the equal monthly payment, r is the annual interest rate and n is the number of years.
Thus,
![2348.62= \frac{600\left[1-\left(1+ \frac{0.0875}{12}\right)^{-12n}\right]}{\frac{0.0875}{12}} \\ \\ \Rightarrow 1-(1+0.007292)^{-12n}= \frac{2348.62\times0.0875}{12\times600} =0.028542 \\ \\ \Rightarrow(1.007292)^{-12n}=1-0.028542=0.971458 \\ \\ \Rightarrow \log(1.007292)^{-12n}=\log0.971458 \\ \\ \Rightarrow-12n\log1.007292=\log0.971458 \\ \\ \Rightarrow-12n= \frac{\log0.971458}{\log1.007292} =-3.985559 \\ \\ \Rightarrow n= \frac{-3.985559}{-12} =0.332130](https://tex.z-dn.net/?f=2348.62%3D%20%5Cfrac%7B600%5Cleft%5B1-%5Cleft%281%2B%20%5Cfrac%7B0.0875%7D%7B12%7D%5Cright%29%5E%7B-12n%7D%5Cright%5D%7D%7B%5Cfrac%7B0.0875%7D%7B12%7D%7D%20%20%5C%5C%20%20%5C%5C%20%5CRightarrow%201-%281%2B0.007292%29%5E%7B-12n%7D%3D%20%5Cfrac%7B2348.62%5Ctimes0.0875%7D%7B12%5Ctimes600%7D%20%3D0.028542%20%5C%5C%20%20%5C%5C%20%5CRightarrow%281.007292%29%5E%7B-12n%7D%3D1-0.028542%3D0.971458%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Clog%281.007292%29%5E%7B-12n%7D%3D%5Clog0.971458%20%5C%5C%20%20%5C%5C%20%5CRightarrow-12n%5Clog1.007292%3D%5Clog0.971458%20%5C%5C%20%20%5C%5C%20%5CRightarrow-12n%3D%20%5Cfrac%7B%5Clog0.971458%7D%7B%5Clog1.007292%7D%20%3D-3.985559%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20n%3D%20%5Cfrac%7B-3.985559%7D%7B-12%7D%20%3D0.332130)
Therefore, the number of months it will take to pay of the debt is 3.99 months which is approximately 4 months.
Equation: f(x)=(1/5)x^2 or f(x)=(0.2)x^2
Check:
f(0)=(1/5)(0)^2
f(0)=(1/5)(0)
f(0)=0✓
f(5)=(1/5)(5)^2
f(5)=(1/5)(25)
f(5)=5✓
Answer:
The Fringe of the rug is 754 cm.
Step-by-step explanation:
Given:
radius = 120 cm
We need to find the fringe of the outside rug.
Solution:
Since the rug is in the circular form.
We can say that fringe of the outside edge of the rug can be equal to circumference of the circle.
Then we will find the Circumference of the circle.
Circumference of the circle is given 2 times 'π' times radius 'r'.
framing in equation form we get;
Circumference of the circle = 
Circumference of the circle = 
Hence the Fringe of the rug is 754 cm.
Answer:
The answer would be option B.
Step-by-step explanation:
There are more people clustered in 22-25 years and the outlier is 38-41 years.
Answer:
x=1/5
Step-by-step explanation: