Answer:
we need to imagines as albert enstein said imagination is important than knowledge
Answer:
Ep = 3924 [J]
Explanation:
To calculate this value we must use the definition of potential energy which tells us that it is the product of mass by the acceleration of gravity by height.

where:
Ep = potential energy [J] (units of Joules)
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 10 [m]
![E_{p} =40*9.81*10\\E_{p} = 3924 [J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D40%2A9.81%2A10%5C%5CE_%7Bp%7D%20%3D%203924%20%5BJ%5D)
1. Amperes, is the SI unit (also a fundamental unit) responsible for current.
2.
Δq over Δt technically
Rearrange for Δq
I x Δt = Δq
1.5mA x 5 = Δq
Δq = 0.0075
Divide this by the fundamental charge "e"
Electrons: 0.0075 / 1.60 x 10^-19
Electrons: 4.6875 x 10^16 or 4.7 x 10^16
3. So we know that the end resistances will be equal so:
ρ = RA/L
ρL = RA
ρL/A = R
Now we can set up two equations one for the resistance of the aluminum bar and one for the copper: Where 1 represents aluminum and 2 represents copper

We are looking for L2 so we can isolate using algebra to get:

If you fill in those values you get 0.0205
or 2.05 cm
They dont work because you crushed them duh