0N. The net force acting on this firework is 0.
The key to solve this problem is using the net force formula based on the diagram shown in the image. Fnet = F1 + F2.....Fn.
Based on the free-body diagram, we have:
The force of gases is Fgases = 9,452N
The force of the rocket Frocket = -9452
Then, the net force acting is:
Fnet = Fgases + Frocket
Fnet = 9,452N - 9,452N = 0N
Answer:
Explanation:
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.
Answer:
a) 6.4 kJ
b) 43.4 kJ
Explanation:
a)
= Heat absorbed = 37 kJ
= Coefficient of performance = 5.8
= Work done
Heat absorbed is given as
=
37 = (5.8)
= 6.4 kJ
b)
= work per cycle required
=
+
= 37 + 6.4
= 43.4 kJ
Use conservation of momentum ;
m1u1 + m2u2 = m1v1 + m2v2
1200×15.6 + 0 = 2700v
v = 18720/2700
v = 6.933 or ~ 7 m/s
Answer: current I = 1.875A
Explanation:
If the resistors are connected in series,
Then the equivalent resistance will be
R = 6 + 18 + 15 + 9
R = 48 ohms
Using ohms law
V = IR
Make current I the subject of formula
I = V/R
I = 90/48
I = 1.875A
And if the resistors are connected in parallel, the equivalent resistance will be
1/R = 1/6 + 1/18 + 1/15 + 1/9
1/R = 0.166 + 0.055 + 0.066 + 0.111
R = 1/0.3999
R = 2.5 ohms
Using ohms law
V = IR
I = 90/2.5
Current I = 35.99A