To solve this problem, let us recall that the formula for
gases assuming ideal behaviour is given as:
rms = sqrt (3 R T / M)
where
R = gas constant = 8.314 Pa m^3 / mol K
T = temperature
M = molar mass
Now we get the ratios of rms of Argon (1) to hydrogen (2):
rms1 / rms2 = sqrt (3 R T1 / M1) / sqrt (3 R T2 / M2)
or
rms1 / rms2 = sqrt ((T1 / M1) / (T2 / M2))
rms1 / rms2 = sqrt (T1 M2 / T2 M1)
Since T1 = 4 T2
rms1 / rms2 = sqrt (4 T2 M2 / T2 M1)
rms1 / rms2 = sqrt (4 M2 / M1)
and M2 = 2 while M1 = 40
rms1 / rms2 = sqrt (4 * 2 / 40)
rms1 / rms2 = 0.447
Therefore the ratio of rms is:
<span>rms_Argon / rms_Hydrogen = 0.45</span>
333.15 Kelvins are equal to 60 degrees celsius
Answer:
Should be moving away
Explanation:
Red is a longer wavelength therefore further away. Wavelength is stretched out more and on the red end. I hope this is right. I decided to research and answer since you didn’t have other answers. Are you taking this on edg? I hope I helped!
Answer:
well... when the horse stops/rests, or if it is blocked by a surface or anything of solid background.
Explanation:
If it is going up a hill or slope and it just starts to move that would also be considered the smallest amount of acceleration this can go for many things when it just starts to move. but I would go for when it rests amounting to your fitting of the question.