Answer:
6.44 × 10^10 N/C
Explanation:
Electric field due to the ring on its axis is given by
E = K q r / (r^2 + x^2)^3/2
Where r be the radius of ring and x be the distance of point from the centre of ring and q be the charge on ring.
r = 0.25 m, x = 0.5 m, q = 5 C
K = 9 × 10^9 Nm^2/C^2
E = 9 × 10^9 × 5 × 0.25 / (0.0625 + 0.25)^3/2
E = 6.44 × 10^10 N/C
The displacement of Itzel according to the question is 6.3 miles SW
Displacement is defined as the distance moved by a body in a specified direction
Find the diagram attached
From the diagram given, we can see that AB is the displacement
To get the length AB, we will have to use the Pythagoras theorem:

From the diagram, we can also se that the direction of the displacement in the South West direction.
Hence the displacement of Itzel according to the question is 6.3 miles SW
Learn more here: brainly.com/question/19108075
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
easy, The fuel is ignited
Answer:
The applied torque is 3.84 N-m.
Explanation:
Given that,
Moment of inertia of the wheel is 
Initial speed of the wheel is 0 (at rest)
Final angular speed is 25 rad/s
Time, t = 13 s
The relation between moment of inertia and torque is given by :

So, the applied torque is 3.84 N-m.