1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
11

How is a theory different from a hypothesis?

Physics
1 answer:
monitta3 years ago
6 0

Answer:

A theory is a system of ideas intended to explain something, and a hypothesis is an educated guess.

Explanation: Hope this Helps! :)

You might be interested in
Astronauts use a centrifuge to simulate the acceleration of a rocket launch. The centrifuge takes 40.0 s to speed up from rest t
Vinvika [58]

Answer

Time period T = 1.50 s

time t = 40 s

r = 6.2 m

a)

Angular speed ω = 2π/T

                              = \dfrac{2\pi }{1.5}  

                              = 4.189 rad/s

Angular acceleration α = \dfrac{\omega}{t}

                                      = \dfrac{4.189}{40}

                                      = 0.105 rad/s²

Tangential acceleration a = r α = 6.2 x 0.105 = 0.651 m/s²

b)The maximum speed.

       v = 2πr/T

          = \dfrac{2\pi \times 6.2}{1.5}

          = 25.97 m/s

So centripetal acceleration.

        a = \dfrac{v^2}{r}

          = \dfrac{25.97^2}{6.2}

          =  108.781 m/s^2

          = 11.1 g    

in combination with the gravitation acceleration.

a_{total} = \sqrt{(11.1g)^2+g^2}

a_{total}= 11.145 g

6 0
3 years ago
A fully loaded cart with a mass of 2200 kg starts from the top of a 12-meter hill on a roller coaster.
Salsk061 [2.6K]

Answer:

A. potential energy is 258720 Joule

Explanation:

A.Gravitational potential energy is: PE = m × g × h

velocity =  15.33 m/s when the car reaches the bottom of the hill.

where, m = mass

            g = acceleration due to gravity

            h = height from the bottom of hill.

The potential energy is : m×g×h

                                     =(2200×9.8×12)

                                     =258720 Joule

B. at the bottom of the hill, the potential energy is converted into kinetic energy so PE at top = KE at bottom

                    kinetic energy= \frac{1}{2}(m*v^{2})

where v = velocity

          m= mass

therefore,               v=\sqrt\frac{2*K.E}{m} {}

                         or,  v=\sqrt{\frac{2*258720}{2200} }

                         or,   v=15.33 m/s

7 0
3 years ago
A kangaroo can jump straight up to a height of 2.0 m. What is its takeoff speed
12345 [234]
7.17m/s glad I could help
5 0
3 years ago
10.A car is travelling at a constant speed of 27m/s. The driver looks away from the road for a 2.0s to tune in a station on the
Korvikt [17]

Explanation:

Distance = speed × time

d = (27 m/s) (2.0 s)

d = 54 m

5 0
3 years ago
How is Coulomb’s law similar to newton’s law of gravitational force? How is it different
natulia [17]

The similarities and the differences between gravitational and electric force are listed below

Explanation:

- The magnitude of the gravitational force between two objects is given by Newton's law of gravitation:

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m_1, m_2 are the masses of the two objects

r is the separation between them

- Coloumb's law gives instead the strength of the electrostatic force between two charged objects, which is

F=k\frac{q_1 q_2}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_1, q_2 are the two charges

r is the separation between the two charges

By comparing the two equations, we find the following similarities:

  • Both the forces are inversely proportional to the square of the distance between the two objects, F\propto \frac{1}{r^2}
  • Both the forces are proportional to the product between the "main quantity" of each force, which is the mass for the gravitational force (F\propto m_1 m_2) and the charge for the electric force (F\propto q_1 q_2

Instead, we have the following differences:

  • The gravitational force is always attractive, since the sign of m is always positive, while the electric force can be either attractive or repulsive, since the sign of q can be either positive or negative
  • The value of the gravitational costant G is much smaller than the value of the Coulomb's constant, so the gravitational force is much weaker than the electric force

Learn more about gravitational force and electric force:

brainly.com/question/1724648

brainly.com/question/12785992

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • How do you put 0.0015kg in scientific notation
    11·1 answer
  • How fast must the space shuttle go to cover 20,000 meters in 4.0 seconds?
    5·1 answer
  • How does mass affect the gravitational pull of the Sun, Earth, and the Moon?
    9·2 answers
  • What is a GOOD AND DETAILED introduction on a thermos. will be awarded 25 points im desperate
    11·1 answer
  • In an experiment to estimate the acceleration due to gravity, a student drops a ball at a distance of 1 m above the floor. His l
    14·1 answer
  • The chemists'_<br> is another name for the periodic table.<br> Answer here
    11·1 answer
  • A storm 10.0 km in diameter has wind speeds of 10.0 m/s. What is its angular velocity in radians per second
    8·1 answer
  • (a) You wish to determine the height of the smokestack of a local coal burning power plant. You convince a member of the mainten
    6·1 answer
  • A 48 N force accelerates a block at 6 m/s/s. What is the mass of the block?
    11·1 answer
  • A physics student swings a tennis ball connected to a rope in a vertical circle with a constant speed of 6.29 m/s. The ball has
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!