Answer:
85.8 m/s
Explanation:
We know that the length of the circular path, L the plane travels is
L = rθ where r = radius of path and θ = angle covered
Now,its speed , v = dL/dt = drθ/dt = rdθ/dt + θdr/dt
where dθ/dt = ω = angular speed = v'/r where v' = maximum speed of plane and r = radius of circular path
Now, from θ = θ₀ + ωt where θ₀ = 0 rad, ω = angular speed and t = time,
θ = θ₀ + ωt = 0 + ωt = ωt
So, v = rdθ/dt + θdr/dt
v = rω + ωtdr/dt
v = (r + tdr/dt)ω
v = (r + tdr/dt)v'/r
v = v' + tv'/r(dr/dt)
v = v'[1 + t(dr/dt)/r]
Given that v' = 110 m/s, t = 33.0s, r = 120 m and dr/dt = rate at which line is shortened = -0.80 m/s (negative since it is decreasing)
So, v = 110 m/s[1 + 33.0 s(-0.80 m/s)/120 m]
v = 110 m/s[1 + 11.0 s(-0.80 m/s)/40 m]
v = 110 m/s[1 + 11.0 s(-0.02/s)]
v = 110 m/s[1 - 0.22]
v = 110 m/s(0.78)
v = 85.8 m/s
Answer:
16 cm
Explanation:
Given that,
The object begins from 0 and moves 3cm towards left side followed by 7 cm towards the right and then, 6 cm towards the left side.
Let the x-axis to be the +ve and on the right side and -ve on the left
Thus, displacement would be:
= 0 -3 + 7 -6
= -2 cm
This implies that the object displaces 2cm towards the left.
While the total distance covered by the object equal to,
= 0cm + 3cm + 7cm + 6cm
= 16 cm
Thus, <u>16 cm</u> is the total distance.
Answer:
Part(a): The frequency is
.
Part(b): The speed of the wave is
.
Explanation:
Given:
The distance between the crests of the wave,
.
The time required for the wave to laps against the pier, 
The distance between any two crests of a wave is known as the wavelength of the wave. So the wavelength of the wave is
.
Also, the time required for the wave for each laps is the time period of oscillation and it is given by
.
Part(a):
The relation between the frequency and time period is given by

Substituting the value of
in equation (1), we have

Part(b):
The relation between the velocity of a wave to its frequency is given by

Substituting the value of
and
in equation (2), we have

Potential energy is energy that is found in a system, grounded on the position of objects. The Coulomb (C) is the unit of charge, and the unit of electric potential is the Volt (V), which is equivalent to (J/C) or Joule per Coulomb.So the formula for this is potential = kQ / d, plugging in the given from the questions will give us:potential = 8.99e9N·m²/C² * 1.602e-19C / 0.053e-9m = 27 V
Answer:
The tension force has a magnitude of 490 N, and acts vertically upward
Explanation:
The complete question is:
A 50kg chandelier hangs from a ceiling suspended by a cable. What is the Tension (magnitude and direction of the force) in the cable?
ANS:
Tension is the force applied axially by rope, chain, cable, rod, etc, as a reaction force. The direction of tension is always towards the support. Since, the support here, is ceiling.
Therefore, the direction of tension force will be <u>vertically upward</u><u>.</u>
Since the chandelier is hanging stationary, without any motion. Thus, there must not be any unbalanced force applied on it.
Hence, the tension force must be equal to the weight of chandelier.
Tension Force = Weight of Chandelier
T = W = mg
T = (50 kg)(9.8 m/s²)
<u>T = 490 N</u>
<u>Thus, the tension force has a magnitude of 490 N, and acts vertically upward</u>