Well for example if you’re throwing a ball The force that moves the ball "up"
must overcome (be larger than) the downward force of the ball's weight.
Once the upward "force of the throw" overcomes the weight, it must then accelerate the ball upward, in order to give an initial upward speed.
Newton's formula: Fnet = ma
indicates that the acceleration (a) will equal the *excess upward force* {once the weight force is cancelled} divided by the ball's mass.
so in summary:
Fnet in Newtons will be the child's UPward force minus the ball's weight.
Answer:
(I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
Explanation:
Given that,
Radius of aorta = 10 mm
Speed = 300 mm/s
Radius of capillary 
Speed of blood 
(I). We need to calculate the effective cross sectional area of the capillaries
Using continuity equation

Where. v₁ = speed of blood in capillarity
A₂ = area of cross section of aorta
v₂ =speed of blood in aorta
Put the value into the formula



(II). We need to calculate the approximate number of capillaries
Using formula of area of cross section


Put the value into the formula


Hence, (I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
Answer:
option (c)
Explanation:
Fundamental frequency of segment A = f
Second harmonic frequency of B = fundamental frequency of A .
Tension in both the wires is same and the mass density is also same as the wires are identical.
fundamental frequency of wire A is given by
.... (1)
Second harmonic of B is given by
.... (2)
Equation (1) is equal to equation (2), we get


So, LB = 2 L
Thus, the length of wire segment B is 2 times the length of wire segment A.
Answer:
the light will reflect parallel to the principal axis
Answer: 0.076 m/s
Explanation:
Momentum is conserved:
m v = (m + M) V
(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V
V = 0.076 m/s
After catching the puck, the goalie slides at 0.076 m/s.