The heat of reaction : 50.6 kJ
<h3>Further explanation</h3>
Based on the principle of Hess's Law, the change in enthalpy of a reaction will be the same even though it is through several stages or ways
Reaction
N₂(g) + 2H₂(g) ⇒N₂H₄(l)
thermochemical data:
1. N₂H₄(l)+O₂(g)⇒N₂(g)+2H₂O(l) ΔH=-622.2 kJ
2. H₂(g)+1/2O₂(g)⇒H₂O(l) ΔH=-285.8 kJ
We arrange the position of the elements / compounds so that they correspond to the main reaction, and the enthalpy sign will also change
1. N₂(g)+H₂O(l) ⇒ N₂H₄(l)+O₂(g) ΔH=+622.2 kJ
2. H₂(g)+1/2O₂(g)⇒H₂O(l) ΔH=-285.8 kJ x 2 ⇒
2H₂(g)+O₂(g)⇒2H₂O(l) ΔH=-571.6 kJ
Add reaction 1 and reaction 2, and remove the same compound from different sides
1. N₂(g)+2H₂O(l) ⇒ N₂H₄(l)+O₂(g) ΔH=+622.2 kJ
2.2H₂(g)+O₂(g)⇒2H₂O(l) ΔH=-571.6 kJ
-------------------------------------------------------------------- +
N₂(g) + 2H₂(g) ⇒N₂H₄(l) ΔH=50.6 kJ
N = 4 moles of Ar2, P = 1.90 atm, V = ?
T = 50C = 273 + 50K = 323K
PV = nRT --> V = nRT/P
V = (4)(.0821)(323)/1.90
V = 106.07/ 1.9
V = 55.8 L
DNA has four main components.
Adenine=A
Cytosine=C
Guanine=G
Thymine=T
Since each letter has an opposite it would be possible by considering the pairs.
A:T
C:G
So, if one strand went as so:
AGCCTAGGTAC
The corresponding strand would be mirrored with the match: TCGGATCCTG
Answer:
The formula used to calculate heat of fusion:
q = m·ΔH f
Explanation:
The formula used to calculate heat of fusion:
q = m·ΔH f