<em>A: When burning Sulfur, Sulfur Dioxide is released. Having more Oxygen available provides more reactive potential for the burning Sulfur, making it burn much more fiercely. In water, the Sulfur Dioxide forms Sulfurous acid. Added: 12 years ago.</em>
<em />
<em>Explanation:</em>
<h3><em /></h3>
<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Answer:
Ka = ( [H₃O⁺] . [F⁻] ) / [HF]
Explanation:
HF is a weak acid which in water, keeps this equilibrium
HF (aq) + H₂O (l) ⇄ H₃O⁺ (aq) + F⁻ (aq) Ka
2H₂O (l) ⇄ H₃O⁺ (l) + OH⁻ (aq) Kw
HF is the weak acid
F⁻ is the conjugate stron base
Let's make the expression for K
K = ( [H₃O⁺] . [F⁻] ) / [HF] . [H₂O]
K . [H₂O] = ( [H₃O⁺] . [F⁻] ) / [HF]
K . [H₂O] = Ka
Ka, the acid dissociation constant, includes Kwater.
Answer:
3.00 mol
Explanation:
Given data:
Mass of P₄ = 211 g
Mass of oxygen = 240 g
Moles of P₂O₅ = ?
Solution:
Chemical equation:
P₄ + 5O₂ → 2P₂O₅
Number of moles of P₄:
Number of moles = mass/ molar mass
Number of moles = 211 g / 123.88 g/mol
Number of moles = 1.7 mol
Number of moles of O₂ :
Number of moles = mass/ molar mass
Number of moles = 240 g / 32g/mol
Number of moles = 7.5 mol
Now we will compare the moles of product with reactant.
O₂ : P₂O₅
5 : 2
7.5 : 2/5×7.5 = 3.00
P₄ : P₂O₅
1 : 2
1.7 : 2×1.7 = 3.4 mol
Oxygen is limiting reactant so the number of moles of P₂O₅ are 3.00 mol.
Mass of P₂O₅:
Mass = number of moles × molar mass
Mass = 3 mol ×283.9 g/mol
Mass = 852 g
Answer:
T = 9.875K
Explanation:
The ideal gas Law is PV = nRT.
P = Pressure
V = Volume
n = amount of substance
R = 8.314 J/(K. mol)
T = Temperature in Kelvin
22g CO2
CO2 Molar Mass = 44g/mol
C = 12g/mol
O = 16g/mol
P = 0.8210atm
V = 50L
PV = nRT
0.8210 x 50 = 8.314 x 0.5 x T
41.05 = 4.157T
T = 41.05/4.157
T = 9.875K