Explanation:
meet .google .com/sxr-wgwg-vnc
The answer is: lose electrons and form positive ions.
Most metals have strong metallic bond, because of strong electrostatic attractive force between valence electrons (metals usually have low ionization energy and lose electrons easy) and positively charged metal ions.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
For example, magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.
Answer:
Pb₂O₄
Explanation:
The given species are:
Pb⁴⁺ O²⁻
Now, to solve this problem, we use the combining powers which corresponds to the number of electrons usually lost or gained or shared by atoms during the course of a chemical combination.
Pb⁴⁺ O²⁻
Combining power 4 2
Exchange of valencies 2 4
Now the molecular formula is Pb₂O₄
Answer:
bleaching powder is actually a mixture of calcium chloride, calcium hydroxide and calcium hypochlorite. hence it is not a single salt. It is not completely soluble in water as it composed of heavy calcium salts, which are known to be insoluble in water.
Answer:
0.558mole of SO₃
Explanation:
Given parameters:
Molar mass of SO₃ = 80.0632g/mol
Mass of S = 17.9g
Molar mass of S = 32.065g/mol
Number of moles of O₂ = 0.157mole
Molar mass of O₂ = 31.9988g/mol
Unknown:
Maximum amount of SO₃
Solution
We need to write the proper reaction equation.
2S + 3O₂ → 2SO₃
We should bear in mind that the extent of this reaction relies on the reactant that is in short supply i.e limiting reagent. Here the limiting reagent is the Sulfur, S. The oxygen gas would be in excess since it is readily availbale.
So we simply compare the molar relationship between sulfur and product formed to solve the problem:
First, find the number of moles of Sulfur, S:
Number of moles of S = 
Number of moles of S =
= 0.558mole
Now to find the maximum amount of SO₃ formed, compare the moles of reactant to the product:
2 mole of Sulfur produced 2 mole of SO₃
Therefore; 0.558mole of sulfur will produce 0.558mole of SO₃