Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
The reaction is
CaC₂(s) + 2H₂O (l) -----> Ca(OH)₂ (s) + C₂H₂ (g)
As we have data of gas ethyne (or acetylene), C₂H₂
We can calculate the moles of acetylene and from this we can estimate the mass of calcium carbide taken
the moles of acetylene will be calculated using ideal gas equation
PV =nRT
R = gas constant = 0.0821 Latm/molK
T = 385 K
V = volume = 550 L
P = Pressure = 1.25 atm
n = moles = ?
n = PV /RT = 1.25 X 550 / 0.0821 X 385 = 21.75 mol
As per balanced equation these moles of acetylene will be obtained from same moles of calcium carbide
moles of calcium carbide = 21.75mol
molar mass of CaC₂ = 40 + 24 = 64
mass of CaC₂ = moles X molar mass = 21.75 X 64 = 1392g
When solutions of sodium sulfide and copper(ii) sulfate are mixed, a precipitate of copper(ii) sulfide is formed. The net ionic equation for this reaction is Cu⁺² (aq) + S⁻² (aq) → CuS (s).
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now first write the balanced chemical equation
CuSO₄ (aq) + Na₂S (aq) → CuS(s) + Na₂SO₄ (aq)
Now write the net ionic equation
Cu⁺² (aq) + SO₄⁻² (aq) + 2Na⁺ (aq) + S⁻² (aq) → CuS (s) + 2Na⁺ + SO₄⁻² (aq)
So the net ionic equation is
Cu⁺² (aq) + S⁻² (aq) → CuS (s)
Thus from the above conclusion we can say that When solutions of sodium sulfide and copper(ii) sulfate are mixed, a precipitate of copper(ii) sulfide is formed. The net ionic equation for this reaction is Cu⁺² (aq) + S⁻² (aq) → CuS (s).
Learn more about the Balanced Chemical Equation here: brainly.com/question/26694427
#SPJ4
Answer:
how strong it is
Explanation:
Seismographs are not able to say when earthquake will happen, but they help humans to know how strong it is or if it is happening or not
Answer:
Final temperature = 25.71°C
Explanation:
By using formula Q=mcΔT
let's say x is final temperature
950 = 150.1 × 4.18 × ( x - 24.2 )
950 = 627.418 × ( x - 24.2)
950 = 627.418x - 15183.5156
627.418x - 15183.5156 = 950
627.418x = 950 + 15183.5156
627.418x = 16133.5156
x = 16133.5156 / 627.418
x = 25.71 °C
So...the final temperature is 25.71 °C