Answer: Magnesium
Explanation:
Galvanic cell is a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy.
The standard reduction potential for magnesium and zinc are as follows:
![E^0_{[Mg^{2+}/Mg]}= -2.37V](https://tex.z-dn.net/?f=E%5E0_%7B%5BMg%5E%7B2%2B%7D%2FMg%5D%7D%3D%20-2.37V)
![E^0_{[Zn^{2+}/Zn]}=-0.76V](https://tex.z-dn.net/?f=E%5E0_%7B%5BZn%5E%7B2%2B%7D%2FZn%5D%7D%3D-0.76V)
Reduction takes place easily if the standard reduction potential is higher (positive) and oxidation takes place easily if the standard reduction potential is less (more negative).
Here Mg undergoes oxidation by loss of electrons, thus act as anode. Zinc undergoes reduction by gain of electrons and thus act as cathode.


Thus magnesium gets oxidized.
The number of sigma and pi bonds are,
Sigma Bonds =
16 Pi Bonds =
3Explanation: Every first bond formed between two atoms is sigma. Pi bond is formed when already a sigma bond is there. While in case of Alkyne (triple Bond) there is one sigma and one pi bond already present, so the third bond is formed by second side-to-side overlap of orbitals, hence, a second pi bond is formed.
Below all black bonds are sigma bonds, while in alkene there is one pi bond and in alkyne there are two pi bonds.
Answer:
They will create an ionic bond.
Explanation:
The atom with the one valence electron will lose its one, because it's a metal and metals will lose electrons to become stable. The nonmetal (with 7 valence electrons) will gain that electron, therefore creating a stable octet for the nonmetal, making the compound stable.
Based on the data given, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
<h3>How can molar mass of a gas be obtained from density, temperature and pressure?</h3>
The molar mass of a gas can be obtained from density, temperature and pressure using the formula below:
- molar mass = density × molar gas constant × temperature/pressure
Molar gas constant, R = R = 0.082 L.atm/mol/K.
Temperature = 150 °C = 423 K
Pressure = 785 torr = 1.033 atm
density = 4.93 g/L
molar mass of gas = 4.93 × 0.082 × 423/1.033
molar mass of gas = 165.5 g/mol
Then, molecular weight of the gas = 165.5 amu
Therefore, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
Learn more about molar mass of a gas at: brainly.com/question/26215522
2 shells because if you do the electronic configuration:
2,7 which adds up to 9
7 stands for the group it in and it also stands for how many electrons are in the outer shell.
the amount of spaces stands for which period its in therefore it in period 2