Answer:
The transition elements or transition metals occupy the short columns in the center of the periodic table, between Group 2A and Group 3A.Explanation:
Newton’s third law, because a person(a) is acting upon the ball(b) by dribbling the ball on the floor
Answer:
Frequency = 6.16 ×10¹⁴ Hz
λ = 4.87×10² nm
Explanation:
In case of hydrogen atom energy associated with nth state is,
En = -13.6/n²
For n = 2
E₂ = -13.6 / 2²
E₂ = -13.6/4
E₂ = -3.4 ev
Kinetic energy of electron = -E₂ = 3.4 ev
For n = 4
E₄ = -13.6 / 4²
E₄ = -13.6/16
E₄ = -0.85 ev
Kinetic energy of electron = -E₄ = 0.85 ev
Wavelength of radiation emitted:
E = hc/λ = E₄ - E₂
hc/λ = E₄ - E₂
by putting values,
6.63×10⁻³⁴Js × 3×10⁸m/s / λ = -0.85ev - (-3.4ev )
6.63×10⁻³⁴ Js× 3×10⁸m/s / λ = 2.55 ev
λ = 6.63×10⁻³⁴ Js× 3×10⁸m/s /2.55ev
λ = 6.63×10⁻³⁴ Js× 3×10⁸m/s /2.55× 1.6×10⁻¹⁹ J
λ = 19.89 ×10⁻²⁶ Jm / 2.55× 1.6×10⁻¹⁹ J
λ = 19.89 ×10⁻²⁶ Jm / 4.08×10⁻¹⁹ J
λ = 4.87×10⁻⁷ m
m to nm:
4.87×10⁻⁷ m ×10⁹nm/1 m
4.87×10² nm
Frequency:
Frequency = speed of electron / wavelength
by putting values,
Frequency = 3×10⁸m/s /4.87×10⁻⁷ m
Frequency = 6.16 ×10¹⁴ s⁻¹
s⁻¹ = Hz
Frequency = 6.16 ×10¹⁴ Hz
It would be considered a Homogeneous Mixture. A mixture with two or more components mixed evenly is a Homogeneous mixture.
Answer:
V₂ = 0.95 L
Explanation:
Given data:
Initial temperature of gas = 171.4 K
Final temperature of gas = 288.4 K
Final volume = 1.6 L
Initial volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 1.6 L × 171.4 K / 288.4 k
V₂ = 274.24 L.K / 288.4 K
V₂ = 0.95 L