____NaNO3 + ___PbO --> ___Pb(NO3)2 + ___Na[2]O
To balace the eqaution, you need to have the same number of atoms for each element on both the reactant (left) and product (right) side.
To start off, you wanna know the number of atoms in each element on both sides, so take it apart:
[reactants] [product]
Na- 1 Na- 2
N- 1 N- 2(it's 2 because the the subscript [2] is outside of the parenthesis)
O- 4 O- 7 (same reason as above)
Pb- 1 Pb- 1
Na is not balanced out, so add a coefficient to make it the same on both sides.In this case, multiply by 2:
2NaNO3
Now Na is balanced, but the N and O are also effected by this, so they also have to be multiplied by 2 and they become:
Na- 2 Na- 2
N- 2 N- 2 (it balanced out)
O- 7 (coefficient times subscript, plus lone O) O- 7 (balanced out)
Pb was already balanced so no need to mess with it, just put a 1 where needed (it doesn't change anything).
Now to put it back together, it will look like this:
2NaNO3 + 1PbO --> 1Pb(NO3)2 + 1Na[2]O
Answer: n=15.56moles
Explanation:
PV = nRT
where
P is pressure in atmospheres
V is volume in Liters
n is the number of moles of the gas
R is the ideal gas constant = given as (0.0821L -atm/k-mol
PV = nRT
n= PV/RT
n= (1.5 X 230)/ (0.0821 X 270)
n= 15.56 moles
Answer:
Look at the properties of Oxygen and Silicon - the two most abundant elements in the Earth's crust - by clicking on their symbols on the Periodic Table.
Explanation:
Hello,
Here is your answer:
The proper answer to this question is option D "<span>sodium hydroxide".
Here is how:
Sodium Hydroxide its a white substance that is a </span><span>electrolyte.
Your answer is D.
If you need anymore help feel free to ask me!
Hope this helps!</span>
Each column is called a group<span>. The elements in each </span>group have<span> the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.</span>