Reduction <span>always results in a lowering of the oxidation number. The reaction of the system above is written as:
</span><span>Cu2+(aq) + Fe(s) --> Cu(s) + Fe2+(aq)
</span>
From the reaction, we see that copper goes from the +2 to a neutral charge. Lowering of the oxidation number happens so this is the element that is being reduced.
Answer:
See explanation and image attached
Explanation:
Alkenes undergo hydrogenation to give the corresponding alkanes. Where the structure of the original alkene is unknown, we can deduce the structure of the alkene from the structure of the products obtained when it undergoes various chemical reactions.
Now, the fact that we obtained 2-methylhexane upon hydrogenation and the two compounds had different heats of hydrogenation means that the two compounds were geometric isomers. The original compounds must have been cis-2-methyl-3-hexene and trans-2-methyl-3-hexene.
When reacted with HCl, the same compound C7H15Cl is formed because the stereo chemistry is removed.
However, we know that the trans isomer is more stable than the cis isomer hence the cis isomer always has a higher heat of hydrogenation than the trans isomer. Thus X is cis-2-methyl-3-hexene.
The answer is relative dating, btw
Answer:
7.335 moles of Cl₂ are required to react with 4.89 miles of Al.
Explanation:
Given data:
Moles of Al = 4.89 mol
Number of moles of Cl₂ required = ?
Solution:
Chemical equation:
2Al + 3Cl₂ → 2AlCl₃
Now we will compare the moles of Al and chlorine from balance chemical equation.
Al : Cl₂
2 : 3
4.89 : 3/2×4.89 =7.335 mol
Thus, 7.335 moles of Cl₂ are required to react with 4.89 miles of Al.
Answer: 1s2 2s2 2p3
Explanation:
atomic number is 7 hence it shuld be 2,5 if numerically.. tho the standard notation is the above giver answer