Answer:
25.45 Liters
Explanation:
Using Ideal Gas Law PV = nRT => V = nRT/P
V = (1mole)(0.08206Latm/molK)(298K)/(1atm) = 25.45 Liters
Answer:
2.03125g of acetylene
Explanation:
First thing's first, we have to write out the balanced chemical equation;
CaC2(s) + 2H2O(l) → Ca(OH)2(aq) + C2H2(g)
Water is in excess, so CAC2 is our limiting reactant. i.e it determines the amount of product that would be formed.
1 mol of CaC2 produces 1 mol of C2H2
In terms of mass;
Mass = Number of moles * Molar mass
where the molar mass of the elements are;
Ca = 40g/mol
C = 12g/mol
H = 1g/mol
CaC2 = 40+ (2*12) = 64g/mol
C2H2 =( 2 * 12) + ( 2 * 1) = 26g/mol
64g (1 * 64g/mol) of CaC2 produces 26g ( 1mol * 26g/mol) of C2H2
5g would produce x?
64 = 26
5 = x
Upon solving for x we have;
x = (5 * 26) / 64
x = 2.03125g
Answer:
balanced equation mole ratio 5 2 mol NO/1 mol O2
10.00 g O2 3 1 mol O2/32.00 g O2 5 0.3125 mol O2
20.00 g NO 3 1 mol NO/30.01 g NO 5 0.6664 mol NO
actual mole ratio 5 0.6664 mol NO/0.3125 mol O2 5 2.132 mol NO/1.000 mol O2
Because the actual mole ratio of NO:O2 is larger than the balanced equation mole
ratio of NO:O2, there is an excess of NO; O2 is the limiting reactant.
Mass of NO used 5 0.3125 mol O2 3 2 mol NO/1 mol O2 5 0.6250 mol NO
0.6250 mol NO 3 30.01 g NO/1 mol NO 5 18.76 g NO
Mass of NO2 produced 5 0.6250 mol NO2 3 46.01 g NO2/1 mol NO2 5 28.76 g NO2
Excess NO 5 20.00 g NO 2 18.76 g NO 5 1.24 g N
Explanation:
Answer:
See Explanation
Explanation:
Metallic bonds involve attraction between electrons and positively charged metal ions. The metals are ionized and electrons form a sea of valence electrons. These loosely bound electrons surround the nuclei of the metals.
The presence of this sea of electrons explains the fact that metals conduct electricity and heat due to the free valence electrons.
Due to the nature of the bonding between metal atoms,metals are malleable and ductile.
Due to the strong electrostatic interaction between metal ions and electrons, the metallic bond is very strong and is very difficult to break thereby accounting for the greater strength of metals as the size of the metallic ion decreases.
Answer: Originally viewed as a single event, the Taconic orogeny is now known to consist of at least three episodes. The first took place in the Early Ordovician Epoch near Maine and Newfoundland. The second was centred on eastern Tennessee in the Middle Ordovician Epoch.