We need to keep in mind that the compound is neutral.
H2SO3
2(+1)+S+3(-2)=0 (since its neutral)
2+S-6=0
S-4=0
S=4
Therefore the oxidation number for sulfur is +4.
The total pressure when the new equilibrium is stabilized is half of the initial pressure of the system.
The given chemical reaction at a stable equilibrium is,
2H₂O(g)+O₂(g) = 2H₂O₂(g)
According to the ideal gas equation,
PV = nRT
P is pressure,
V is volume,
n is moles
R is gas constant,
T is temperature.
Assuming the temperature is constant.
If the volume of the system is twice the initial volume then the total pressure at the new equilibrium can be found out as,
P₁V₁ = P₂V₂
Where, P₁ and V₁ are initial volume and pressure while P₂ and V₂ are final pressure and volume.
If V₂ = 2V₁,
P₂ = P₁/2
So, the final total pressure will be half of the initial pressure.
To know more about equilibrium, visit,
brainly.com/question/517289
#SPJ4
Answer:
A. It would float with about 80% of the cube below the surface of the water and 20% above the surface.
Explanation:
The choice that best describes what happens to cube of the given density value is that it would float with about 80% of the cube would be below the surface of the water and 20% above the surface.
Density is the mass per unit volume of a substance. The more mass a body has relative to volume, the great it's density. In short, density is directly proportional to mass and inversely related to volume.
The density of water is 1g/mL
If the density of the cube were to be the same with that of water, the substance will just mix up with water .
Here the density is less than that of water.
The density is 0.2g/mL
Therefore, 20% will stay afloat and 80% will be below the surface of the water.
Answer: Heating the hydrated forms of cobalt chloride reverses the reactions above, returning cobalt chloride to the blue, water-free, or anhydrous, state. Water is "liberated" in these reactions, known as dehydration reactions.
Explanation:
potassium reacts the most vigorously.