The Milky Way is a spiral galaxy type so it has arms sort of like an octopus. We live in the Milky Way
Answer:
<h2>121ohms</h2>
Explanation:
Formula used for calculating power P = current * voltage
P = IV
From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;
P = IV
P =(V/R)V
P = V²/R
Given parameters
Power rating of the bulb P = 100 Watts
Source voltage V = 110V
Required
Resistance of the bulb R
Substituting the given parameters into the formula for calculating power to get Resistance R;
P = V²/R
100 = 110²/R
R = 110²/100
R = 110 * 110/100
R = 12100/100
R = 121 ohms
<em>Hence, the resistance of this bulb is 121 ohms</em>
Answer:
The slope intercept form is probably the most frequently used way to express equation of a line. To be able to use slope intercept form, all that you need to be able to do is 1) find the slope of a line and 2) find the y-intercept of a line.
Explanation:
the answer to your question is 15 :)
Answer:
L = μ₀ n r / 2I
Explanation:
This exercise we must relate several equations, let's start writing the voltage in a coil
= - L dI / dt
Let's use Faraday's law
E = - d Ф_B / dt
in the case of the coil this voltage is the same, so we can equal the two relationships
- d Ф_B / dt = - L dI / dt
The magnetic flux is the sum of the flux in each turn, if there are n turns in the coil
n d Ф_B = L dI
we can remove the differentials
n Ф_B = L I
magnetic flux is defined by
Ф_B = B . A
in this case the direction of the magnetic field is along the coil and the normal direction to the area as well, therefore the scalar product is reduced to the algebraic product
n B A = L I
the loop area is
A = π R²
we substitute
n B π R² = L I (1)
To find the magnetic field in the coil let's use Ampere's law
∫ B. ds = μ₀ I
where B is the magnetic field and s is the current circulation, in the coil the current circulates along the length of the coil
s = 2π R
we solve
B 2ππ R = μ₀ I
B = μ₀ I / 2πR
we substitute in
n ( μ₀ I / 2πR) π R² = L I
n μ₀ R / 2 = L I
L = μ₀ n r / 2I