Answer:
The Heavier Firefighter
Explanation:
Generally, more massive objects will have more intertia than less massive objects. As such it takes more force to halt a more massive object if its moving at the same speed as a smaller object. This can also be thought of in the context of Newton's second law. The more force needed to accelerate an object means the more force the object will have.
Answer:

Explanation:
Given that;
I₀ = 9.55 A
f = 359 cycles/s
b = 72.2 cm
c = 32.5 cm
a = 80.2 cm
Using the formula;

where;



Replacing our values into above equation; we have:



Then the
is calculated as:



24- series
25- parallel
26- no, because they’re connected in series
27- yes, because they’re connected in parallel
There are 2 electrons generated from the oxidation of one water molecule.
<h3>Describe photooxidation.</h3>
The process of a substance interacting with oxygen or losing electrons from chemical species under the influence of light is known as photooxidation. Photooxidation happens in plants when there is environmental stress. It is called photooxidative stress as a result. Reactive oxygen species are produced by the absorption of excess excitation energy in plant tissues. Chloroplasts are harmed by the accumulation of these reactive oxygen species, which is a damaging process in plants. High-intensity light and little
are the two conditions that cause this photooxidative stress to occur most frequently. It is a procedure that requires light. Photorespiration in
plants guards against photooxidation.
To know more about Photooxidation visit:
brainly.com/question/14788790
#SPJ4
In kynematics you describe the motion of particles using vectors and their change in time. You define a position vector r for a particle, and then define velocity v and acceleration a as


In dynamics Newton's laws predict the acceleration for a given force. Knowing the acceleration, and the kynematical relations defines above, you can solve for the position as a function of time: r(t)