Answer:
I believe it's false because the atomic number is the number of protons in the nucleus of an atom.
Answer:
209.98 g of NaOH
Explanation:
We are given;
- Volume of HCl as 3 L
- Molarity of HCl as 1.75 M
We are required to calculate the mass of NaOH required to completely neutralize the acid given.
First, we write a balanced equation for the reaction between NaOH and HCl
That is;
NaOH + HCl → NaCl + H₂O
Second, we determine the number of moles of HCl
Number of moles = Molarity × Volume
= 1.75 M × 3 L
= 5.25 moles
Third, we use the mole ratio to determine the moles of NaOH
From the reaction,
1 mole of NaOH reacts with 1 mole of HCl
Therefore;
Moles of NaOH = Moles of HCl
= 5.25 moles
Fourth, we determine the mass of NaOH
Molar mass of NaOH = 39.997 g/mol
Mass of NaOH = 5.25 moles × 39.997 g/mol
= 209.98 g
Thus, 209.98 g of NaOH will completely neutralize 3L of 1.74 M HCl
Answer:
70 mL of 5% HCl and 30 mL of 15% HCl
Explanation:
We will designate x to be the fraction of the final solution that is composed of 5% HCl, and y to be the fraction of the final solution that is composed of 15% HCl. Since the percentage of the final solution is 8%, we can write the following expression:
5x + 15y = 8
Since x and y are fractions of a total, they must equal one:
x + y = 1
This is a system of two equations with two unknowns. We will proceed to solve for x. First, an expression for y is found:
y = 1 - x
This expression is substituted into the first equation and we solve for x.
5x + 15(1 - x) = 8
5x+ 15 - 15x = 8
-10x = -7
x = 7/10 = 0.7
We then calculate the value of y:
y = 1 - x = 1 - 0.7 = 0.3
Thus 0.7 of the 100 mL will be the 5% HCl solution, so the volume of 5% HCl we need is:
(100 mL)(0.7) = 70 mL
Similarly, the volume of 15% HCl we need is:
(100 mL)(0.3) = 30 mL
Answer:
It will strengthen Electromagnetism