Answer:
441.28 g Oxygen
Explanation:
- The combustion of hydrogen gives water as the product.
- The equation for the reaction is;
2H₂(g) + O₂(g) → 2H₂O(l)
Mass of hydrogen = 55.6 g
Number of moles of hydrogen
Moles = Mass/Molar mass
= 55.6 g ÷ 2.016 g/mol
= 27.8 moles
The mole ratio of Hydrogen to Oxygen is 2:1
Therefore;
Number of moles of oxygen = 27.5794 moles ÷ 2
= 13.790 moles
Mass of oxygen gas will therefore be;
Mass = Number of moles × Molar mass
Molar mass of oxygen gas is 32 g/mol
Mass = 13.790 moles × 32 g/mol
<h3> = 441.28 g</h3><h3>Alternatively:</h3>
Mass of hydrogen + mass of oxygen = Mass of water
Therefore;
Mass of oxygen = Mass of water - mass of hydrogen
= 497 g - 55.6 g
<h3> = 441.4 g </h3>
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
Answer:
3,855.532 grams
Explanation:
1 pound = 453.592 grams
8.50 = ? grams
--> 8.50 * 453.592 = 3,855.532 grams.
Answer:
It does not matter where the sample of water came from or how it was prepared. Its composition, like that of every other compound, is fixed.
Answer:
Heterogeneous mixture
Explanation:
A homogeneous mixture is defined as a mixture in which the constituents of the mixture are uniformly distributed. A typical example of a homogeneous mixture is when a salt is dissolved in water.
A heterogeneous mixture refers to a kind of mixture whereby the composition of the mixture is not uniform. A typically example of a heterogeneous mixture is non-homogenized milk.
Since non-homogenized milk is not homogeneous, the cream rises to the top and separates from the rest of the mixture because the emulsion has not been stabilized. However, homogenized milk is just milk whose emulsion has been stabilized the cream does not separate when left to stand.