Answer: I think the answer is, 3.312177825e+24 atoms
Explanation: I had a problem similar to this, Hope this helps!
Answer:
C) As a gas is heated, the pressure decreases.
Explanation:
From the choices given, the statement that "as a gas is heated, the pressure decreases is false".
When gases are heated, their molecules expands and the volume of the gas increases. In a fixed container, the pressure of the gases will also increases.
- Gases lack internal cohesion and very weak to no intermolecular forces binding them together.
- When they are subjected to heat, they gain more energy(kinetic energy) which causes them to begin to spread out.
- Thus, they take up even more space allowing volume to increase appreciably.
1 mole = 6.022 * 10^23 formula units.
1.84*10^24 formula units CaCl₂ * (1 mole CaCl₂/6.022*10^23 formula units CaCl₂) = 3.06 moles of CaCl₂.
There are 3.06 moles of CaCl₂.
Answer:
A)provide a basis for virtually all modern anaesthetic techniques
restore tissue oxygen tension by improving oxygen availability in a wide range of conditions such as COPD, cyanosis, shock, severe hemorrhage, carbon monoxide poisoning, major trauma, cardiac/respiratory arrest
aid resuscitation
provide life support for artificially ventilated patients
aid cardiovascular stability
B)Pure oxygen, instead of air, is used to increase the flame temperature to allow localized melting of the workpiece material (e.g. steel) in a room environment. ... Welding metal results when two pieces are heated to a temperature that produces a shared pool of molten metal.
Answer:
Explanation:
H₂SO₄ is a strong acid, which means that most of it ionizes in aqueous solution.
Since it is a diprotic acid (two hydrogen ions) its ionization occurs in two steps:
- H₂SO₄ (aq) → H⁺(aq) + HSO₄⁻(aq)
- HSO₄⁻ (aq) → H⁺(aq) + SO₄²⁻(aq)
Thus, almost all H₂SO₄ has ionized and its final concentration is almost nothing.
After the first ionization, the conentrations of H⁺(aq) and HSO₄⁻ are equal but by the second ionization more H⁺ ions are produced along with SO₄⁻.
You can show it as one step dissociation, assuming 100% dissociation (given this is a strong acid):
By the stequiometry you can build this table:
H₂SO₄ (aq) → 2H⁺(aq) + SO₄²⁻(aq)
Initial A 0 0
Change - x +2x +x
Equilibrium A - x 2x x
As explained, A - x is very low, and 2x is twice x. Thus,
The rank of the concentrations from highest to lowest is: