Answer:
c. 0.750 atm
.
Explanation:
Hello!
In this case, since the two vessels have different volume, we can see that the gas is initially at 3.00 atm into the 1.00-L vessel, but next, it is allowed to move towards the 3.00-L vessel, meaning that the final volume wherein the gas is located, is 4.00 L; therefore, we use the Boyle's law to compute the final pressure:

Therefore the answer is c. 0.750 atm
.
Best regards!
Answer:
Knetic
Explanation:
When you jump on a trampoline, your body has kinetic energy that changes over time. As you jump up and down, your kinetic energy increases and decreases with your velocity. Your kinetic energy is greatest, just before you hit the trampoline on the way down and when you leave the trampoline surface on the way up.
If your in a city, go inside a building immediately. most buildings have lightening rod, so the lightening voltage won't hit on you.
if you're in an open area, don't go under a tree, or it'll hit you and the tree, even if it doesn't hit you, you still cannot take the impact by the exploding tree. leave the water or metal bicycle or stuff that conducts electricity.
Answer:
Near the boiling point of the solvent
Explanation:
The process of recrystallization is hinged on the fact that the amount of solute that can be dissolved by a solvent increases with temperature. The process involves creation of a solution by dissolving a solute in a solvent at or near its boiling point. At the boiling point of the solvent, the solute has a greater solubility in the solvent; not much volume of the hot solvent is required to dissolve the solute.
Before the solution is later cooled, you can now filter out insoluble impurities from the hot solvent. The quantity of the original solute drops appreciably because impurities have been removed. At this lower temperature, the solution becomes saturated and the solute can no longer be held in solution hence it forms pure crystals of solute, which can be recovered.
Recrystallization must be carried out using the proper solvent. The solute must be relatively insoluble in the solvent at room temperature but more soluble in the solvent at elevated temperature.