Answer:
118.22 atm
Explanation:
2SO₂(g) + O₂(g) ⇌ 2SO₃(g)
KP = 0.13 = 
Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.
- With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
- With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.
The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:
The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.
Rewriting KP and solving for PT:

Answer:
The barycenter is the point in space around which two objects orbit. For the Moon and Earth, that point is about 1000 miles (1700 km) beneath your feet, or about three-quarters of the way from the Earth's center to its surface.
Explanation:
Pressure of the gas inside the container is 662.59 torr.
<h3>What is ideal gas law?</h3>
The ideal gas law (PV = nRT) connects the macroscopic characteristics of ideal gases. An ideal gas is one in which the particles are both non-repellent and non-attractive to one another (have no volume).
The general law of ideal gas can be applied here: PV is equal to nRT, where P is the gas pressure in atm.
V is the number of moles of the gas in a mole, and n is the volume of the gas in L. R is the universal gas constant. T is the temperature(Kelvin) of the gas.
If P and T are different values and n and V are constants, then
(P₁T₂) = (P₂T₁).
P₁ = 735 torr, T₁ = 29°C + 273 = 302 K,
P₂ = ??? torr, T₂ = 62°C + 273 = 335 K.
∴ P₂ = (P₁T₂)/(P₁) = (735 torr)(302 K)/(335 K) = 662.59 torr.
To know more about ideal gas law visit:
brainly.com/question/29405260
#SPJ1
The total pressure of the gaseous mixture has been 5.37 atm. Thus, option D is correct.
The partial pressure has been defined as the pressure exerted by each gas in the mixture.
According to the Dalton's law of partial pressure, the total pressure of gas has been the sum of the partial pressure of the gases in the mixture.
The given partial pressure of gases in the mixture has been:
- Partial pressure of Nitrogen,

- Partial pressure of Oxygen,

- Partial pressure of Argon,

- Partial pressure of Helium,

- Partial pressure of Hydrogen,

The total pressure of the gaseous mixture has been:

The total pressure of the gaseous mixture has been 5.37 atm. Thus, option D is correct.
For more information about partial pressure, refer to the link:
brainly.com/question/14623719
Answer: D- previous models
Explanation:
Because you always have to build off of other things to help make yours better and learn from the mistakes