Answer:
I believe Mercury has the most extreme temperatures in the solar system, ranging from -280?F at night to 800 degrees F during the day for parts of the surface.
Hope that helps! :)
a.) Plants that thrive in the shade are often able to hold on to sunlight for extensive periods of time; they're in a sense like the camels of the plaNt WoRld.
b.) Though artificial lights are not nearly as beneficial as the sun, one could invest in one of them plant growing light thingies, but sun-loving plants might be sad if u do this instead of letting them soak in ePic rays from the sun.
Answer:
The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N
Explanation:
The details of the given masses having gravitational attractive force between them are;
m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m
The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;

Where;
F = The gravitational force between m₁ and m₂
G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²
r₂ = 0.1 m + 0.15 m = 0.25 m
Therefore, we have;

The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N
300/8 = 37.5
37.5 x 12 = 450
New temp. = 450 K
Hope this helps!
Answer:
0.21%
Explanation:
We are given;
Mass; m = 100 kg
Diameter; d = 2.2 mm = 2.2 × 10^(-3) m
Young's modulus; E = 12.5 x 10^(10) N/m².
Formula for area is;
A = πd²/4
A = (π/4) x (2.2 x 10^(-3))²
A = 3.8 x 10^(-6) m²
Force; F = mg
g is acceleration due to gravity and has a constant value of 9.8 m/s²
F = 100 × 9.8
F = 980 N
Formula for young's modulus is;
E = Stress/strain
Formula for stress = F/A
Formula for strain = ΔL/L
Thus;
E = (F/A)/(ΔL/L)
Making ΔL/L the subject, we have;
ΔL/L = (F/A)/E
Plugging in the relevant values;
ΔL/L = 980/(3.8 x 10^(-6) × 12.5 × 10^(10))
ΔL/L = 0.0021
Then percentage increase in length of a wire = 0.0021 × 100% = 0.21%