<span>The mass of one mole of sodium bicarbonate (aka NaHCO3) is equal to 1 * 22.99g/mol + 1 * 1.00g/mol + 1 * 12.01g/mol + 3 * 16.00g/mol = 83.91g/mol. From this, we can convert 4.2g of NaHCO3 to moles by dividing by 83.91g/mol, to get 0.050 moles of sodium bicarbonate.</span>
Explanation:
To give the glass its final shape and size, it is blown into with a blowpipe, creating a sort of bubble of glass. To carry out this process, the blowpipe holding the glass must be placed on a steel stand. Then, the glass artist has to blow into the blowpipe while rotating it at the same
Answer:
Explanation:
1 mol of sodium = 23 grams (use the number on your periodic table).
0.7350 mol sodium = x
Cross multiply
1*x = 0.7350 * 23
x = 16.905
You will get slightly less than this, depending on your periodic table. But the method will be the same.
Answer:
No, compound A and B are not the same compound
Explanation:
According to the law of definite proportion "every chemical compound contains fixed and constant proportions (by mass) of its constituent elements." (Encyclopedia Britannica)
We can see in the question that the ratio of flourine to sulphur in compound A is 1.18 while the ratio of flourine to sulphur in compound B is 2.37.
The two chemical compounds do not contain a fixed proportion by mass of their constituent elements therefore, they can not be same compound according to the law of definite proportions.
Answer: 1) 
Equilibrium constant is defined as the ratio of the product of concentration of products to the product of concentration of reactants each term raised to their stochiometric coefficients.
![K_{eq}=\frac{[H_2S]^2}{H_2]^2\times [S_2]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D)
where [] = concentration in Molarity=
Thus ![[H_2S]=\frac{68.5}{1.0}=68.5M](https://tex.z-dn.net/?f=%5BH_2S%5D%3D%5Cfrac%7B68.5%7D%7B1.0%7D%3D68.5M)
![[H_2]=\frac{0.50}{1.0}=0.50M](https://tex.z-dn.net/?f=%5BH_2%5D%3D%5Cfrac%7B0.50%7D%7B1.0%7D%3D0.50M)
![[S_2]=\frac{0.020}{1.0}=0.020M](https://tex.z-dn.net/?f=%5BS_2%5D%3D%5Cfrac%7B0.020%7D%7B1.0%7D%3D0.020M)
![K_{eq}=\frac{[68.5]^2}{0.50]^2\times [0.020]}=938450](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5B68.5%5D%5E2%7D%7B0.50%5D%5E2%5Ctimes%20%5B0.020%5D%7D%3D938450)
As the value of K is greater than 1, the reaction is product favored.
2) 
![K_{eq}=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
![K_{eq}=\frac{[0.500]^2}{[0.0250]}=10](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5B0.500%5D%5E2%7D%7B%5B0.0250%5D%7D%3D10)
3) 
![K_{eq}=\frac{[NH_3]^2}{[N_2]\times [H_2]^3}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5Ctimes%20%5BH_2%5D%5E3%7D)
4) Reactions which do not continue to completion are called equilibrium reactions as the rate of forward reaction is equal to the rate of backward direction.