Answer: The pH at equivalence point for the given solution is 5.59.
Explanation:
At the equivalence point,

So, first we will calculate the moles of
as follows.
= 0.0845 mol
Now, volume of
present will be calculated as follows.
Volume = 
= 
= 0.1891 L
Therefore, the total volume will be the sum of the given volumes as follows.
110 ml + 189.1 ml
= 299.13 ml
or, = 0.2991 L
Now, ![[CH_{3}NH_{3}^{+}] = \frac{0.0845 mol}{0.2991 L}](https://tex.z-dn.net/?f=%5BCH_%7B3%7DNH_%7B3%7D%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B0.0845%20mol%7D%7B0.2991%20L%7D)
= 0.283 M
Chemical equation for this reaction is as follows.

As,
= 
= 
Now, ![[HNO_{3}] = \sqrt{k_{a}[CH_{3}NH_{3}^{+}]}](https://tex.z-dn.net/?f=%5BHNO_%7B3%7D%5D%20%3D%20%5Csqrt%7Bk_%7Ba%7D%5BCH_%7B3%7DNH_%7B3%7D%5E%7B%2B%7D%5D%7D)
= 
= 
Now, pH will be calculated as follows.
pH = ![-log [H_{3}O^{+}]](https://tex.z-dn.net/?f=-log%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D)
= 
= 5.59
Thus, we can conclude that pH at equivalence point for the given solution is 5.59.