C The number and types of bonds within the molecule.
Explanation:
In a molecule, the number and types of bonds present determines the amount of available energy therein.
When bonds are broken or formed, energy is usually released.
- Elements combine with one another in order to attain stability in this state.
- Through this process, they form bonds by attraction.
- Where atoms exchange their valence electrons by losing or gaining it, electrovalent bonds form.
- In covalent molecules, electrons are usually shared between atoms.
- An attraction result from this type of interaction.
- The bond formed stores energy in the process.
- When bonds are broken, energy is usually released. The energy accrues when the bond was being formed.
- In molecules, we have covalent bond.
Learn more:
Bond brainly.com/question/7213980
Covalent bonds brainly.com/question/5258547
#learnwithBrainly
Answer is: theoretical molarity of water is 55.1222 mol/L.<span>
d(H</span>₂O) = 0.9922 g/mL.
M(H₂O) = 2 · Ar(H) + Ar(O) · g/mol.
M(H₂O) = 2 + 16 · g/mol = 18 g/mol.
c(H₂O) = d(H₂O) ÷ M(H₂O).
c(H₂O) = 0.9922 g/mL ÷ 18 g/mol.
c(H₂O) = 0.0551 mol/mL.
c(H₂O) = 0.0551 mol/mL · 1000 mL/L = 55.1222 mol/L.
My view point is that i disagree and that the rules are completely different
Explanation:
When we add a non-volatile solute in a solvent then due to the impurity added to the solution there will occur an increase in the boiling point of the solution.
This increase in boiling point will be known as elevation in boiling point.
As one beaker contains seawater (water having NaCl) will have some impurity in it. So, more temperature is required by seawater to escape into the atmosphere.
Whereas another beaker has only pure water so it is able to easily escape into the atmosphere since, it contains no impurity.
Thus, we can conclude that level of pure water will decrease more due to non-volatile solute present in it as compared to seawater.