Answer:
I think is more easy to push an empty car because theres anything that makes the car hard to move and when it is totally full is harder because of the weight of the food or drinks and it makes the car more harder to move
Explanation:
i hope you understand me and this helps, sorry if it doesn't TT
First, solve for the acceleration of the car. You know the mass of the car and the braking force, so you can use the equation Force = Mass x Acceleration. This gives you 12,000 = 2,000 x A. Divide 12,000 by 2,000 to find the acceleration equal to 6 m/s^2. This is the rate that the car is slowing down at. Velocity is equal to accleration x time (rate x time), so you multiply 6 by the time of 5 seconds. This leaves you with a velocity of 30 m/s or about 67.1 mph.
Answer:
q = 3.87 x 10⁵ C
Explanation:
given,
Electric field, E = 8.60 x 10¹ = 86 N/C
radius of earth, R = 6371 Km = 6.371 x 10⁶ m
Coulomb constant, K = 9 x 10⁹ N · m²/C²
Charge on the earth = ?
the electric field at the point


inserting all the values

q = 3.87 x 10⁵ C
The electric charge on the earth is equal to 3.87 x 10⁵ C
Before a person walks through burning coal, the person will make sure their feet are very wet. When they start walking on the coal, this moisture will evaporate and form a protective gas layer underneath the person's feet. You can see examples of this if you happen to drip some water on a hot stove or any very hot surface. The water will very easily glide around on top of a newly formed layer of air underneath it -- like air hockey pucks on an air hockey table. Note that when someone walks through burning coal, typically this is also done very quickly to prevent a great deal of exposure to possible harm. By walking quickly, thinking positively, and letting the water cushion you from immediate danger over a short distance, such a task is possible. You may have also heard of physics teachers demonstrating how this principle works by sticking their hand first in a bucket of water and then quickly in a bucket of boiling molten lead. In the lead, their hand is protected briefly by a layer of gas from the evaporated water (the water vapor). I'm fairly sure that there is a name for this particular layer of gas, but I'm afraid the name is beyond me at the moment. In other words, water vapor has a low heat capacity and poor thermal conduction. Very often, the coals or wood embers that are used in fire walking also have a low heat capacity. Sweat produced on the bottom of people's feet also helps form a protective water vapor. All of this together makes it possible, if moving quickly enough, to walk across hot coals without getting burned. WARNING: Do not attempt to perform any of the actions described above. You can seriously injure yourself. Answered by: Ted Pavlic, Electrical Engineering Undergrad Student, Ohio St. (citing my source)