I think it’s C. Marshmallow and toothpicks are used to show the composition of a water molecule
Answer:
T1 = 417.48N
T2 = 361.54N
T3 = 208.74N
Explanation:
Using the sin rule to fine the tension in the strings;
Given
amass = 42.6kg
Weight = 42.6 * 9.8 = 417.48N
The third angle will be 180-(60+30)= 90 degrees
Using the sine rule
W/Sin 90 = T3/sin 30 = T2/sin 60
Get T3;
W/Sin 90 = T3/sin 30
417.48/1 = T3/sin30
T3 = 417.48sin30
T3 = 417.48(0.5)
T3 = 208.74N
Also;
W/sin90 = T2/sin 60
417.48/1 = T2/sin60
T2 = 417.48sin60
T2 = 417.48(0.8660)
T2 = 361.54N
The Tension T1 = Weight of the object = 417.48N
Answer:
A and B
Explanation:
The data sets that depict an accelerating object is Data Set A & Data Set B.
The both data sets show that the body is accelerating. Also, they show that the body started from rest (0m/s) at a 0sec.
Data Set A shows a non-constant acceleration which has changing amount of velocity with change in time. While Data Set B shows a constant acceleration which has constant amount of velocity with change in time.
Answer: Wave speed may equal frequency*wavelength. Yet doubling the frequency only halves the wavelength; wave speed remains the same. To change the wave speed, the medium would have to be changed. 24. What are some simple steps I can take to protect my privacy online? Many people ... So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. 3.8k views ... The period of a note is 0.3 seconds and the speed of sound in air is 340 m/s. So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. What is the period of a wave if the wavelength is 100m and the speed is 200 m/s? ... If you move towards a light source, the wavelength decreases.
Explanation:
Answer:
Option 5. 1 and 3
Solution:
The only forces acting on the tennis ball after it has left contact with the racquet and the instant before it touches the ground are the force of gravity in the downward direction and the force by the air exerted on the ball.
The ball after it left follows the path of trajectory and as it moves forward in the horizontal direction the force of the air acts on it.
In the whole projectile motion of the ball, the acceleration due to gravity acts on the ball thus the force of gravity acts on the ball in the downward direction before it hits the ground.