Answer:
The forces are exerted on different objects so they are not balanced forces.
Explanation:
Answer:
7.5 km/h (2.1 m/s) due east
Explanation:
The average velocity of the person is given by:

where
d is the displacement
t is the time taken
In this problem,
d = 15 km is the displacement
t = 2.0 h is the time elapsed
so the average velocity is

and the direction is the same as the displacement (east).
We can also convert the velocity into SI units (m/s). We have:
d = 15 km = 15,000 m
t = 2.0 h * 3600 s/h = 7200 s

Relative dating is used to arrange geological events….
Relative dating puts geologic events in chronological order without requiring that a specific numerical age be assigned to each event….
Relative Dating uses the half life of isotopes to get the exact age of a rock or mineral.
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.