Answer:
Correct answer: F₂ = 104.5 N
Explanation:
Given:
m = 57 g = 57 · 10⁻³ kg
Δt = 30 ms = 30 · 10 ⁻³ seconds
V₁ = 73.14 m/s service speed
V₂ = 55 m/s returned speed
M = m · V Momentum or Impulse
You forgot to indicate what time the ball contact when returning.
We will assume that the time is the same Δt = 30 ms = 30 10 ⁻³ seconds.
The formula for calculating force is according to Newton's second law is:
F = ΔM / Δt = m · ΔV / Δt
Force during service is:
F₁ = 57 · 10⁻³ · 73.14 / 30 · 10 ⁻³ = 138.97 N
F₁ = 138.97 N
Returned force:
F₂ = 57 · 10⁻³ · 55 / 30 · 10 ⁻³ = 104.5 N
F₂ = 104.5 N
God is with you!!!
Answer:
The total resistance of the circuit = 188ohms
Explanation:
potential difference = 25volts
For resistors in series, equivalent resistance
Rt = R1 + R2 + R3
Rt = 120 + 18 + 50
Rt = 188ohms
The total resistance of the circuit = 188ohms
I believe this is electron degeneracy, because the star is essentially having too many reactions too fast and collapses in on itself eventually.
Limited resources: resources that take a long time to replenish
Example: coal, oil, nuclear gas
Non- limited resource: resources that are constantly being replenished
Example: soil, wind, water
Answer:
- 278.34 kg m/s^2
Explanation:
The rate of the change of momentum is the same as the force.
The force that an object feels when moviming in a circular motion is given by:
F = -mrω^2
Where ω is the angular speed and r is the radius of the circumference
Aditionally, the tangential velocity of the body is given as:
v = rω
The question tells us that
v = 25 m/s
r = 7m
mv = 78 kg m/s
Therefore:
m = (78 kg m/s) / (25 m/s) = 3.12 kg
ω = (25 m/s) / (7 m) = 3.57 (1/s)
Now, we can calculate the force or rate of change of momentum:
F = - (3.12 kg) (7 m)(3.57 (1/s))^2
F = - 278.34 kg m/s^2