it is an example of kinetic energy
so the answer is b kinetic energy
-4.0 (negative since the image is inverted)
The question involves a ping-pong ball that is held submerged in a bucket by a string attached to the bottom of the bucket.
The answer is the tension of the string will increase. This is because making the water salty increases its density, and consequently, increases its buoyancy. This is why sea water is more buoyant than fresh water. Therefore the ping pong is pushed more upwards by the water when salt is added than initially. This gives the string more tension.
Answer:
I'm not sure..but please refer to your teacher later.
Answer: Based on Newton's First law of motion (where inertia is involved), smooth ice increases the forceused to accelerate the hockey puck.
Explanation;
- smooth ice reduces the resistances between the surface of the figure skates and the ice itself.
- based on inertia theory ; the heavier the weight, the larger the inertia.. which explains it takes alot of force to move a heavier object than the lighter ones.. it also hard to *stop* the motion of heavier objects than the lighter ones.
- now let's look at the design of the player shoe itself, they have a sharp blade at the bottom of the figure stakes.. which takes us to the law of the force.. the smaller the surface area, the more forces acting on it. So, players force (weight, F= mg) acts on the tip of the blade and on the ice
- high inertia (run fast) and high force (attack opponent and pass puck) enables them to perform well in playing hockey
- Thus if there's no resistance and the inertia of the player is high then they could run and pass the puck quickly
Answer:
Resistance = 252.53 Ohms
Explanation:
Given the following data;
Charge = 0.125 C
Voltage = 5 V
Time = 6.3 seconds
To find the resistance;
First of all, we would determine the current flowing through the battery;
Quantity of charge, Q = current * time
0.125 = current * 6.3
Current = 0.125/6.3
Current = 0.0198 A
Next, we find the resistance;
Resistance = voltage/current
Resistance = 5/0.0198
Resistance = 252.53 Ohms