The molar mass of
is 86.02 g/mole
.
<h3><u>
Explanation:</u>
</h3>
The molar mass of a chemical compound is represented as the mass of a unit of that compound separated by the number of substances in that unit, measured in moles. The molar mass is a volume, not molecular, the property of a substance.
The molar mass is a percentage of various examples of the compound, which usually change in mass due to the appearance of isotopes.
From the below attached table, the Molar mass of
is 86.0108 g/mol.
Answer:
Raster Image Correlation Spectroscopy (RICS) is a novel new technique for measuring molecular dynamics and confocal fluorescence imaging concentrations. RICS technique extracts information on molecular dynamics and concentrations of live cell images taken in commercial confocal systems
Explanation:
RICS analysis must be performed on images acquired through raster scanning. Laser scanning microscopes generate images by measuring the fluorescence intensity in one area of a pixel at a time (a 'pixel' in this context does not have the same definition as a pixel in computer graphics, but refers to a measurement of localized intensity). The value of a pixel is obtained by illuminating a region of the sample with the focal volume of a laser beam and measuring the intensity of the fluorescence emitted. The laser beam moves to a new location and a new pixel is recorded. Each pixel can be considered to correspond to a region of the sample, with its width (called pixel size) defined by the distance the beam moves between measurements. This means that the size of a pixel is separate and independent from the size of the focal volume of the laser beam.
Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
A homogeneous mixture, the substances are uniformly distributed throughout the mixture