The gas flows from higher concentration/pressure to lower concentration/pressure, which is outside the ball.
Answer:
32.7 g of Zn
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl₂ + H₂
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂
Next, we shall determine the number of mole of Zn required to produce 0.5 mole of H₂. This can be obtained as follow:
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂.
Therefore, 0.5 mole of Zn will also react to produce to 0.5 mole of H₂.
Thus, 0.5 mole of Zn is required.
Finally, we shall determine the mass of 0.5 mole of Zn. This can be obtained as follow:
Mole of Zn = 0.5 mole
Molar mass of Zn = 65.4 g/mol
Mass of Zn =?
Mass = mole × molar mass
Mass of Zn = 0.5 × 65.4
Mass of Zn = 32.7 g
Thus, 32.7 g of Zn is required to produce 0.5 mole of H₂.
Answer:
pH = 4.34
Explanation:
pH= -1/2(logKa) -1/2(log C)
= -1/2( log 5.98*10^-8) -1/2(log 0.0353)
=-1/2(-7.22)-1/2(-1.45)
=3.61+0.725= 4.34
Answer:
E
Explanation:
Here in this question, what we will do is to select which of the pairs that do not correlate.
A. Enthalpy and heat content
This two terms are at par with each other. By definition, the enthalpy of a system simply is the total amount of heat content it has.
B. Endothermic reaction and +H
These two terms are at par with each other. An endothermic reaction is one in which heat is absorbed from the surroundings. It has a positive value for the heat content i.e the enthalpy is positive and thus H is positive.
C. Exothermic reaction and -H
An exothermic reaction is one in which heat is released to the environment. It usually has a negative value for the enthalpy and thus the value of H is negative.
D. High energy and High Stability
These two terms are not at par. When an entity has or is of high energy, it is usually unstable. An entity at a higher energy level will not be stable until it goes to a lower level of energy.
Thus higher energy level is associated with lesser stability while lower energy levels are associated with higher stability. The lesser the energy of an entity, the higher its stability.
This makes the option our answer.