Answer:
electric field E = (1 /3 e₀) ρ r
Explanation:
For the application of the law of Gauss we must build a surface with a simple symmetry, in this case we build a spherical surface within the charged sphere and analyze the amount of charge by this surface.
The charge within our surface is
ρ = Q / V
Q ’= ρ V
'
The volume of the sphere is V = 4/3 π r³
Q ’= ρ 4/3 π r³
The symmetry of the sphere gives us which field is perpendicular to the surface, so the integral is reduced to the value of the electric field by the area
I E da = Q ’/ ε₀
E A = E 4 πi r² = Q ’/ ε₀
E = (1/4 π ε₀) Q ’/ r²
Now you relate the fraction of load Q ’with the total load, for this we use that the density is constant
R = Q ’/ V’ = Q / V
How you want the solution depending on the density (ρ) and the inner radius (r)
Q ’= R V’
Q ’= ρ 4/3 π r³
E = (1 /4π ε₀) (1 /r²) ρ 4/3 π r³
E = (1 /3 e₀) ρ r
Answer:
When a man travels from Hilly region to Terai region, his weight gradually increases because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
Explanation:
because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
Radiant heat transfer is proportional to the 4-th power of absolute temperature.
Therefore if the temperature is quadrupled, the radiant heat energy will increase by a factor of
4⁴ = 256
Answer: 256
Answer:
The following statements are correct.
1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.
Wrong statements:
1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.
Explanation:
Answer:
I hope it is no too late
Explanation:
hmmm,
In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. ... If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced.