To determine the molar mass, you need to get the atomic mass of the molecule. To do this, check the periodic table for the atomic mass or average atomic weight of each element.
Mg = 24.305 x 1 = 24.305 amu
O = 15.9994 x 2 =31.9988 amu
H = 1.0079 x 2 = 2.0158 amu
Then, add all the components to get the atomic mass of the molecule.
24.305 amu + 31.9988 amu + 2.0158 amu = 58.3196 amu
The atomic mass is just equivalent to its molar mass.
So, the molar mass of Magnesium hydroxide (Mg(OH)2) is 58.3196 g/mol.
Feso3 compound name
Iron(II) Sulfite FeSO3 Molecular Weight
Hope this helps!
Have a great day :)
Answer:
116 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of calcium = 2.9 moles
Mass of calcium =.?
The mole and mass of a substance are related according to the following formula:
Mole = mass / molar mass
With the above formula, we can obtain the mass of calcium. This can be obtained as follow:
Number of mole of calcium = 2.9 moles
Molar mass of calcium = 40 g/mol
Mass of calcium =.?
Mole = mass / molar mass
2.9 = mass of calcium / 40
Cross multiply
Mass of calcium = 2.9 × 40
Mass of calcium = 116 g
Therefore, the mass of 2.9 moles of calcium is 116 g.
Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C
The concentration of positive charge and mass in Rutherford's atomic model is called the nucleus. Rutherford's experiments involving the use of alpha particle beams directed onto thin metal foils demonstrated the existence of the nucleus. The nucleus of an atom contains positively charge particles called protons and other uncharged particles called neutrons. According to this model most volume of an atom is made up of an empty space.