Answer:
The product is cyclohexanol
Explanation:
Firstly,
A ketone undergo a borohydride reduction reaction to form an alcohol as below,
R-CO-R' ⇒ R-CO(OH)-R'
- IR Spectrum confirms that alcohol group is existed with the peak at 3400 cm⁻¹
- From 1H-NMR, the product has 10 hydrogen atoms, the MS suggest that the formula is C₅H₁₀O (M = 86). With this formula, the alcohol is monosaturated. Since, the substance already underwent reduction reaction, the only way to suggest a monosaturated compound is a cyclic alcohol. So the compound is cyclopentanol.
- Check with other spectroscopic properties,
- 3 signals of 13C NMR confirms the structure is symmetrical, δ 24.2, (-<u>C</u>H₂-CH₂-CH(CH₂-)-OH), δ 35.5 (-CH₂-<u>C</u>H₂-CH(CH₂-)-OH), δ 73.3 (-CH₂-CH₂-<u>C</u>H(CH₂-)-OH).
1.56 δ (4H, triplet) - (-C<u>H</u>₂-CH₂-CH-OH) ; triplet as coupling with 2 H,
1.78 δ (4H, multiplet) - (-CH₂-C<u>H</u>₂-CH-OH); multiplet as coupling with 2H of CH₂, 1 H of CH
3.24 δ (1H, quintet); - (-CH₂-CH₂-C<u>H</u>(CH₂-)-OH), coupling with4 H of 2 group of CH₂
3.58 δ (1H, singlet); - (-CH₂-CH₂-CH(CH₂-)-O<u>H</u>), hydrogen of alcohol group, not tend to coupling with other hydrogen

The element having valency of 1 is ~
Answer:
yes, in certain cases
there are different types of bondings between atoms
and in some they lend electrons to make their atom stable this type of bonding is called ionic bonding
and in covalent bond the atoms share their electrons
According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.