Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!
Answer:
C.
Explanation:
para sakin letter C ganonn
Answer:
0.03atm
Explanation:
Given parameters:
Total pressure = 780torr
Partial pressure of water vapor = 1.0atm
Unknown:
Partial pressure of radon = ?
Solution:
A sound knowledge of Dalton's law of partial pressure will help solve this problem.
The law states that "the total pressure of a mixture of gases is equal to the sum of the partial pressures of the constituent gases".
Mathematically;
P
= P
+ P
+ P
Since the total pressure is 780torr, convert this to atm;
760torr = 1 atm
780torr =
atm = 1.03atm
For this problem;
Total pressure = Partial pressure of radon + Partial pressure of water vapor
1.03 = Partial pressure of radon + 1.0
Partial pressure of radon = 1.03 - 1.00 = 0.03atm
Answer: Final temperature of the gas will be 330 K.
Explanation:
Gay-Lussac's Law: This law states that pressure is directly proportional to the temperature of the gas at constant volume and number of moles.
(At constant volume and number of moles)

where,
= initial pressure of gas = 1.00 atm
= final pressure of gas = 1.13 atm
= initial temperature of gas =
K
= final temperature of gas = ?


Therefore, the final temperature of the gas will be 330 K.