They hold molecular bonds together in solds and liquids.
It represents a conservation in mass because the actual mass of water isn’t changing. The relationship between the molecules and the density of the water is. There is still the same amount of mass.
Answer:
100 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 400 g
Time (t) = 4 years
Half-life (t½) = 2 years
Amount remaining (N) =?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Time (t) = 4 years
Half-life (t½) = 2 years
Number of half-lives (n) =?
n = t / t½
n = 4 / 2
n = 2
Thus, 2 half-lives has elapsed.
Finally, we shall determine the amount remaining of the radioactive isotope. This can be obtained as follow:
Original amount (N₀) = 400 g
Number of half-lives (n) = 2
Amount remaining (N) =?
N = 1/2ⁿ × N₀
N = 1/2² × 400
N = 1/4 × 400
N = 0.25 × 400
N = 100 g
Thus, the amount of the radioactive isotope remaing is the 100 g.
All of them are the current biggest sources of electrical energy.
3 of them will be explained.
------------------------
1) Natural gas:
it was the largest source, 38 % approx., of the USA electricity generation. It is used in steam turbines and gas turbines to generate electricity.
----------------------
2) Nuclear energy:
It was the source of 19% of the U.S. electricity generation in 2021. Nuclear power plants use steam turbines to produce electricity from fission.
---------------------
3) Coal power:
It was the 2nd.-largest energy source for US electricity generation in 2021.
Answer:
All atoms heavier than barium
Explanation:
In the periodic table, elements are divided into blocks. We have the;
s- block elements
p- block elements
d- block elements
f- block elements
However, immediately after Barium, we now encounter elements that have f-orbitals. Barium possesses a fully filled d-orbital. Hence after it, we see elements with 4f and 5f orbitals called the Lanthanides and actinides. The elements following the lanthanide and actinide series possess completely filled f-orbitals as inner orbitals.
Hence elements heavier than barium all possess f-orbitals.