Answer:
Bohr used emission spectrum for its mono atomic model....
Explanation:
Emission Spectrum is produced when atoms are excited by energy. After excitation, they emit this energy in the form of different wavelengths according to the type of atom and produce a unique fingerprint of themselves called as it's emission spectrum.
Absorption Spectrum is a type of spectrum that is produces when photons of light are absorbed by electrons at one state. they jump to another state and may cause scattering. This produces a specific absorption spectrum for that specific atom.
Answer:
Gravitational Force.
Gravitation is the agent that gives weight to objects with mass and causes them to fall on the ground when dropped.
Answer:
Explanation:
1 mole of Fe require 2 Moles of NiO(OH)
so for 4.25 mol of Fe and 6.70 mol of NiO(OH), Fe is the limiting reagent.
1 mole produces 1 mole of Fe(OH)2
4.25 moles will produce 4.25 moles of Fe(OH)2
Answer: The correct option is A,
--> a.) Transition metals have partially filled d subshells.
Explanation:
Transition elements are all metals of economic importance. They are found in the d- lock of the periodic table between group 2 and 3. They occupy three rows, with ten elements in each row. The term 'transition metals' refers only to an element which has PARTIALLY filled d orbitals. Typical example of transition metals include iron (Fe).
They have partially filled 3d orbitals which are responsible for the special properties of the metals. These include:
--> Physical properties: the transition metals have high boiling and melting points. They are hard, dense and lustrous. They are also good conductors of heat and electricity.
--> Chemical reactivity: In the s- block and p-block, the chemical properties of the elements in the same period vary, often quite markedly, from left to right. This does not happen with the transition metals because electrons are added progressively to the inner d-orbitals.
--> Variable oxidation states: they have variable oxidation states because 3d electrons are available for bond formation.