Answer:
When you heat an atom, some of its electrons are "excited* to higher energy levels. When an electron drops from one level to a lower energy level, it emits a quantum of energy. ... The different mix of energy differences for each atom produces different colours. Each metal gives a characteristic flame emission spectrum.
Explanation:
Answer:
1) combustion
2) double replacement
3) combination
4) combustion
Explanation:
The combustion of a compound refers to the reaction of that compound with oxygen to produce heat and light. In reactions (1) and (4) above, ethanol and methane reacted with oxygen to yield carbon dioxde and water. This is a combustion reaction.
Reaction(2) is a double replacement reaction because the both cations exchange their anion partners in the product.
Reaction (3) is a combination reaction. It involves the joining of two elements to form a new compound.
Since this is Argon it would be a noble gas
The molar concentration of the KI_3 solution is 0.0833 mol/L.
<em>Step 1</em>. Calculate the <em>moles of S_2O_3^(2-)</em>
Moles of S_2O_3^(2-) = 25.00 mL S_2O_3^(2-) ×[0.200 mmol S_2O_3^(2-)/(1 mL S_2O_3^(2-)] = 5.000 mmol S_2O_3^(2-)
<em>Step 2</em>. Calculate the <em>moles of I_3^(-)
</em>
Moles of I_3^(-) = 5.000 mmol S_2O_3^(2-)))) × [1 mmol I_3^(-)/(2 mmol S_2O_3^(2-)] = 2.500 mmol I_3^(-)
<em>Step 3</em>. Calculate the <em>molar concentration of the I_3^(-)</em>
<em>c</em> = "moles"/"litres" = 2.500 mmol/30.00 mL = 0.083 33 mol/L
A combustion reaction is a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve \(\ce{O_2}\) as one reactant. The combustion of hydrogen gas produces water vapor. Notice that this reaction also qualifies as a combination reaction.
I looked this up but hope it helps