Answer:
4 gamma closest thing to this V
Explanation:
Technetium. Tc is a very versatile radioisotope, and is the most commonly used radioisotope tracer in medicine.
Answer:
7.22 × 10²⁹ kg
Explanation:
For the material to be in place, the gravitational force on the material must equal the centripetal force on the material.
So, F = gravitational force = GMm/R² where M = mass of neutron star, m = mass of object and R = radius of neutron star = 17 km
The centripetal force F' = mRω² where R = radius of neutron star and ω = angular speed of neutron star
So, since F = F'
GMm/R² = mRω²
GM = R³ω²
M = R³ω²/G
Since ω = 500 rev/s = 500 × 2π rad/s = 1000π rad/s = 3141.6 rad/s = 3.142 × 10³ rad/s and r = 17 km = 17 × 10³ m and G = universal gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg²
Substituting the values of the variables into M, we have
M = R³ω²/G
M = (17 × 10³ m)³(3.142 × 10³ rad/s)²/6.67 × 10⁻¹¹ Nm²/kg²
M = 4913 × 10⁹ m³ × 9.872 × 10⁶ rad²/s²/6.67 × 10⁻¹¹ Nm²/kg²
M = 48,501.942 × 10¹⁵ m³rad²/s² ÷ 6.67 × 10⁻¹¹ Nm²/kg²
M = 7217.66 × 10²⁶ kg
M = 7.21766 × 10²⁹ kg
M ≅ 7.22 × 10²⁹ kg
I think in parallel circuits.
Answer:
Gravitational force mg' =(49)mg=49×63=28N.
Explanation:
What is the gravitational force on it due to the Earth , at a height equal to half the radius of the Earth ? (Given that the radius of Earth = 6400 km). Gravitational force mg ( This is not the real explanation)
Answer:
50 N
Explanation:
Efficiency of a machine can't be more than 1, so I assume you mean 40%. (Remember, efficiency and mechanical advantage are not the same).
Efficiency is the ratio of work out of a system to the work in to the system.
e = Wout / Win
Work is force times distance, so:
e = (Fout × Dout) / (Fin × Din)
Rearranging:
Fin = (Fout × Dout) / (e × Din)
Fin = (Fout / e) × (Dout / Din)
Fin = (Fout / e) / (Din / Dout)
We know that e = 0.40, and Fout = 120 N. Since there are 6 pulleys, we also know that Din/Dout = 6.
F = (120 N / 0.4) / 6
F = 50 N