1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
3 years ago
7

A body staring for rest acquries a velocity of 10ms in 5 seconds calculate (a) the accleration(b) the distance covered by the bo

dy in5 second
Physics
1 answer:
larisa86 [58]3 years ago
3 0

Answer:

Acceleration of the body=2m/s square

Distance covered= 25m

Explanation:

Acceleration is found using formula a=v-u divided by t.

Distance covered is found using formula= ut+1 by 2 × at square.

Where initial velocity(u)=0 (body starts from rest)

You might be interested in
2. A ball is dropped from rest. The acceleration due to gravity is 10m/s? and the time it
d1i1m1o1n [39]

Answer:

STEP BY STEP

V = S/T

V= 10/5

V = 2 m/s

3 0
3 years ago
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
It is epistemically possible that a completed physics might include which of the following propositions? O Souls and other spiri
ohaa [14]

Answer:

option D.

Explanation:

The correct answer is option D.

At present the knowledge of physics does not includes the study related to souls , other spiritual substance.

Physics does not give the answers of question like God created universe , matter is unreal, etc.

So, there might will be possibility that in future complete physics will give the answer of all these questions i.e. correct answer is All of the above.

3 0
3 years ago
Which list includes translucent objects only
Lunna [17]

Objects that let in light and blurry images are translucent.

Translucent is a term that refers to an adjective. This characteristic is the property of an object to allow the passage of light, without allowing visibility with high clarity through it.

This term is often confused with transparency. However, they differ because a transparent object lets light through easily and allows you to see clearly through it.

According to the above, objects that allow light to pass through but do not allow clear vision are translucent.

Learn more in: brainly.com/question/10626808

5 0
3 years ago
In an inelastic collision a 2.5 kg ball moving at 7.5 m/s is caught by a 70kg man while the man is standing on ice. What is the
MrRa [10]

The velocity of the ball and the man is 0.259 m/s

Explanation:

We can solve this problem by using the law of conservation of momentum. In fact, in an isolated system, the total momentum before and after the collision must be conserved. Therefore, for the ball-man system, we can write:

p_i = p_f\\m_1 u_1 + m_2 u_2 = (m_1+m_2)v

where:

m_1 = 2.5 kg is the mass of the ball

u_1 = 7.5 m/s is the initial velocity of the ball

m_2 = 70 kg is the mass of the man

u_2 = 0 is the initial velocity of the man

v is the final velocity of the man and the ball after the collision

Re-arranging the equation and substituting the values, we find the final velocity:

v=\frac{m_1 u_1}{m_1+m_2}=\frac{(2.5)(7.5)}{2.5+70}=0.259 m/s

So, the man and the ball slides on the ice at 0.259 m/s.

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

3 0
3 years ago
Other questions:
  • 0.2000 kg of water at 20.00°C is contained in a 0.1000-kg copper container. The container is shaken vigorously for 10.00 minutes
    5·1 answer
  • Two identical conducting spheres, A and B, carry equal charge. They are stationary and are separated by a distance much larger t
    9·1 answer
  • What percentage of the power of the battery is dissipated across the internal resistance and hence is not available to the bulb?
    10·1 answer
  • You want to launch a stone using the elastic band of a slingshot. The force that the elastic band applies to an object is given
    6·1 answer
  • Need help on this please
    14·2 answers
  • Two violinists are trying to play in tune. However, whenever they play their A string at the same time they hear a beat frequenc
    12·1 answer
  • HELP PLZZZZZ Consider the following data:
    15·2 answers
  • Two condition required for work done​
    14·1 answer
  • What is happening to the car's motion?
    9·2 answers
  • Which of the following is true for gravitational force?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!