Answer:
243 N
Explanation:
The formula for electromagnetic force is F= Kq1q2/r^2
where r is the distance between the charges, if the distance between the charges is reduced by 1/3 then F will increase by 9 [(1/3r)^2 becomes 1/9r which is 9F] so 27*9 is 243N
Answer:
3.71 m/s in the negative direction
Explanation:
From collisions in momentum, we can establish the formula required here which is;
m1•u1 + m2•v2 = m1•v1 + m2•v2
Now, we are given;
m1 = 1.5 kg
m2 = 14 kg
u1 = 11 m/s
v1 = -1 m/s (negative due to the negative direction it is approaching)
u2 = -5 m/s (negative due to the negative direction it is moving)
Thus;
(1.5 × 11) + (14 × -5) = (1.5 × -1) + (14 × v2)
This gives;
16.5 - 70 = -1.5 + 14v2
Rearranging, we have;
16.5 + 1.5 - 70 = 14v2
-52 = 14v2
v2 = - 52/14
v2 = 3.71 m/s in the negative direction
Answer:
a.) The electric and magnetic fields are in phase with each other as they propagate through space.
Explanation:
Electromagnetic wave is a transverse wave in which magnetic field and electric field both induces each other as both changes with time
Here magnetic field induces electric field and similarly magnetic field induces electric field.
As we know that this is a transverse wave so here magnetic field and electric field lies in perpendicular planes. but they both propagate in same direction in such a wave that both fields reaches their maximum position and minimum positions simultaneously
So the correct answer is
a.) The electric and magnetic fields are in phase with each other as they propagate through space.
Explanation:
The given data is as follows.
F = 
q = 
v = 385 m/s
= 0.876
Now, we will calculate the magnitude of magnetic field as follows.
B = 
= 
=
T
= 10.65 T
Thus, we can conclude that magnitude of the magnetic field is 10.65 T.
Answer:
The lowest energy of electron is the ground state.
Explanation: