In other words a infinitesimal segment dV caries the charge
<span>dQ = ρ dV </span>
<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>
<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>
<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
Answer:
68.8 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) of box = 18 Kg
Coefficient of friction (μ) = 0.39
Force of friction (F) =?
Next, we shall determine the normal force of the box. This is illustrated below:
Mass (m) of object = 18 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Normal force (N) =?
N = mg
N = 18 × 9.8
N = 176.4 N
Finally, we shall determine the force of friction experienced by the object. This is illustrated below:
Coefficient of friction (μ) = 0.39
Normal force (N) = 176.4 N
Force of friction (F) =?
F = μN
F = 0.39 × 176.4
F = 68.796 ≈ 68.8 N
Thus, the box experience a frictional force of 68.8 N.