Addition of 2vector gives you 1large vector quantity
        
                    
             
        
        
        
<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>
        
             
        
        
        
Taste: salty
color: varies. ex: white, clear, purple, yellow, etc.
status: mineral
        
             
        
        
        
The question is about unclear since no picture provided. But from the question, it could be guessed that the box is moving back and forth on the frictionless plane at the amplitude of A in simple harmonic motion.
Answer:
D. At x=0, it's acceleration is at a maximum
Explanation:
As the box move forward, it reaches point A and than move backward. Theoretically, the box will move backwards, through its origin, to point -A and then going forward.
Point A is the maximum displacement of the box in this case. At this point, the box instantaneously stop to go backward. Therefore the velocity at that moment is zero.
From point -A, the box travel forward and keep building up speed due to the release in potential energy of the spring. And at point x=0, the velocity become maximum. After point x=0, the velocity of the box slows down due to the conversion of kinetic energy to potential energy of the spring. And as it reaches point A, it reaches zero velocity.
The same can be said as the box travels backward from point A to -A