The force exerted on the car during this stop is 6975N
<u>Explanation:</u>
Given-
Mass, m = 930kg
Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s
Time, t = 2s
Force, F = ?
F = m X a
F = m X s/t
F = 930 X 15/2
F = 6975N
Therefore, the force exerted on the car during this stop is 6975N
Answer:
C
Explanation:
O has 8 protones,S tiene 16, Se 34 y Te 52.
This would be a negative force because they are going in different directions
Answer:
39.375 A
Explanation:
To find the induced current, we use the relation
e = -ΔΦ/Δt, where
ΔΦ = change in magnetic flux of the bracelet
Δt = change in time, = 20 ms
Also, Φ = A.ΔB, such that
A = area of the bracelet, 0.005m²
ΔB = magnetic field strength of the bracelet = 1.35 - 4.5 = -3.15 T
ΔΦ = A.ΔB
ΔΦ = 0.005 * -3.15
ΔΦ = -.01575 wb
e = -ΔΦ/Δt
e = -0.01575 / 20*10^-3
e = 0.7875 V
From the question, the resistance of the bracelet is 0.02 ohm, so
From Ohms Law, I = V/R
I = 0.7875 / 0.02
I = 39.375 A
At the position of terminal speed the net acceleration of the ball will become zero
As we know that terminal speed will always reach when net force on the ball is zero and its speed will become constant.
So here at this position we can say



now when ball is moving at half of the terminal speed in upward direction then net force on the ball in downwards direction will be


here speed of the ball is half of the terminal speed

then we have


now acceleration will be given as

now we have

downwards