Answer:
A) P_rad.abs = 2.4 × 10^(-8) Pa and P_rad.ref = 4.8 × 10^(-8) Pa
B) P_rad.abs = 2.369 × 10^(-13) atm and P_rad.ref = 4.738 × 10^(-13) atm
Explanation:
A) The formula for radiation pressure for absorbed light is given as;
P_rad = I/c
Where I is the intensity = 7.20 W/m² and c is the speed of light = 3 × 10^(8) m/s
Thus;
P_rad = 7.2/(3 × 10^(8))
P_rad.abs = 2.4 × 10^(-8) Pa
Now formula for radiation pressure for reflected light is given as;
P_rad = 2I/c
Thus;
P_rad = (2 × 7.2)/(3 × 10^(8))
P_rad.ref = 4.8 × 10^(-8) Pa
B) Now, 1.013 × 10^(5) Pa = 1 atm
Thus, for the absorbed surface, we have;
P_rad.abs = (2.4 × 10^(-8))/(1.013 × 10^(5))
P_rad.abs = 2.369 × 10^(-13) atm
For the reflecting surface, we have;
P_rad_ref = (4.8 × 10^(-8))/(1.013 × 10^(5))
P_rad.ref = 4.738 × 10^(-13) atm