1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
3 years ago
8

The intensity at a certain distance from a bright light source is 7.20 W/m2 .

Physics
1 answer:
Gemiola [76]3 years ago
8 0

Answer:

A) P_rad.abs = 2.4 × 10^(-8) Pa and P_rad.ref = 4.8 × 10^(-8) Pa

B) P_rad.abs = 2.369 × 10^(-13) atm and P_rad.ref = 4.738 × 10^(-13) atm

Explanation:

A) The formula for radiation pressure for absorbed light is given as;

P_rad = I/c

Where I is the intensity = 7.20 W/m² and c is the speed of light = 3 × 10^(8) m/s

Thus;

P_rad = 7.2/(3 × 10^(8))

P_rad.abs = 2.4 × 10^(-8) Pa

Now formula for radiation pressure for reflected light is given as;

P_rad = 2I/c

Thus;

P_rad = (2 × 7.2)/(3 × 10^(8))

P_rad.ref = 4.8 × 10^(-8) Pa

B) Now, 1.013 × 10^(5) Pa = 1 atm

Thus, for the absorbed surface, we have;

P_rad.abs = (2.4 × 10^(-8))/(1.013 × 10^(5))

P_rad.abs = 2.369 × 10^(-13) atm

For the reflecting surface, we have;

P_rad_ref = (4.8 × 10^(-8))/(1.013 × 10^(5))

P_rad.ref = 4.738 × 10^(-13) atm

You might be interested in
You charge an initially uncharged 65.7-mf capacitor through a 39.1-Ï resistor by means of a 9.00-v battery having negligible int
uysha [10]
In a RC-circuit, with the capacitor initially uncharged,  when we connect the battery to the circuit the charge on the capacitor starts to increase following the law:
Q(t) = Q_0 (1-e^{-t/\tau})
where t is the time, Q_0 = CV is the maximum charge on the capacitor at voltage V, and \tau = RC is the time constant of the circuit.
Using this law, we can answer all the three questions of the problem.

1) Using R=39.1 \Omega and C= 65.7 mF=65.7\cdot 10^{-3}F, the time constant of the circuit is:
\tau = RC=(39.1 \Omega)(65.7 \cdot 10^{-3}F)=2.57 s

2) To find the charge on the capacitor at time t=1.95 \tau, we must find before the maximum charge on the capacitor, which is
Q_0 = CV=(65.7 \cdot 10^{-3}F)(9 V)=0.59 C
And then, the charge at time t=1.95 \tau is equal to
Q(1.95 \tau) = Q_0 (1-e^{-t/\tau})=(0.59 C)(1-e^{-1.95})=0.51 C

3) After a long time (let's say much larger than the time constant of the circuit), the capacitor will be fully charged, this means its charge will be Q_0 = 0.59 C. We can see this also from the previous formule, by using t=\infty:
Q(t) = Q_0 (1-e^{-\infty})=Q_0(1-0) = 0.59 C

4 0
3 years ago
Which of the view will show you a view<br>to the<br>very<br>Similar<br>Print View?​
sweet [91]
What are you talking about
3 0
3 years ago
What is the mass of a stone moving at a speed of 15 m/s and having a monument at 7.1 kg meters per second
adell [148]

Answer:

<h3>The answer is 0.47 kg</h3>

Explanation:

The mass of the object given it's momentum and velocity can be found by using the formula

m =  \frac{p}{v}  \\

where

p is the momentum

v is the velocity

We have

m =  \frac{7.1}{15}  \\  = 0.4733333...

We have the final answer as

<h3>0.47 kg</h3>

Hope this helps you

4 0
3 years ago
HELLLP PLEASE || the graph below shows a conversion of energy for a skydive jumping out of a plane and landing safely on the gro
fenix001 [56]

Answer: I maybe wrong but i'm pretty sure its C) Kinetic energy

5 0
3 years ago
You are standing on a skateboard, initially at rest. a friend throws a very heavy ball towards you. you can either catch the obj
PIT_PIT [208]

<span>You should deflect the ball in order to maximize your speed on the skateboard.

Since this creates a larger impulse, you want to deflect the ball. Splitting it up into catching and throwing the ball may by something you can think of deflecting the ball. First, you need to catch the ball, which in turn would push you forward with some speed. (The speed we are talking about should obviously be equal to option A, where you catch the ball). Now, throw the ball back to him since these two processes are equal to deflecting the ball. Throwing a mass away from you would cause or enable you to move even fast.</span>

7 0
3 years ago
Other questions:
  • The full range of frequencies of electromagnetic radiation is called
    6·2 answers
  • Amy wants to know whether or not an item will float when placed in a fluid. Which of the comparisons below, when true, will mean
    6·1 answer
  • Another name for the horizontal rows on the periodic table of elements
    6·2 answers
  • Which of these is exhibiting kinetic energy? Which of these is exhibiting kinetic energy? the high-energy phosphate bonds of a m
    7·1 answer
  • What do you call rocxs that form under intense heat and pressure
    14·1 answer
  • In any one material, all electromagnetic waves have the same
    8·1 answer
  • An automobile accelerates from rest at 2.0 m/s2 for 20 s. The speed is then held constant for 20 s, after which there is an ac-
    10·1 answer
  • Electric field lines can never cross. Woodward crossed electric field lines indicate?
    9·1 answer
  • Use the three following phrases to identify which type of formation is represented by each of the three models. Copy and paste t
    15·2 answers
  • Two equal-mass balls swing down and hit identical bricks while traveling at identical speeds. Ball A bounces back, but ball B ju
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!