1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
2 years ago
8

The intensity at a certain distance from a bright light source is 7.20 W/m2 .

Physics
1 answer:
Gemiola [76]2 years ago
8 0

Answer:

A) P_rad.abs = 2.4 × 10^(-8) Pa and P_rad.ref = 4.8 × 10^(-8) Pa

B) P_rad.abs = 2.369 × 10^(-13) atm and P_rad.ref = 4.738 × 10^(-13) atm

Explanation:

A) The formula for radiation pressure for absorbed light is given as;

P_rad = I/c

Where I is the intensity = 7.20 W/m² and c is the speed of light = 3 × 10^(8) m/s

Thus;

P_rad = 7.2/(3 × 10^(8))

P_rad.abs = 2.4 × 10^(-8) Pa

Now formula for radiation pressure for reflected light is given as;

P_rad = 2I/c

Thus;

P_rad = (2 × 7.2)/(3 × 10^(8))

P_rad.ref = 4.8 × 10^(-8) Pa

B) Now, 1.013 × 10^(5) Pa = 1 atm

Thus, for the absorbed surface, we have;

P_rad.abs = (2.4 × 10^(-8))/(1.013 × 10^(5))

P_rad.abs = 2.369 × 10^(-13) atm

For the reflecting surface, we have;

P_rad_ref = (4.8 × 10^(-8))/(1.013 × 10^(5))

P_rad.ref = 4.738 × 10^(-13) atm

You might be interested in
The mass of Jupiter is about ___ times the mass of Venus. help!?
Angelina_Jolie [31]
Three times larger I think.

4 0
2 years ago
Ch 31 HW Problem 31.63 10 of 15 Constants In an L-R-C series circuit, the source has a voltage amplitude of 116 V , R = 77.0 Ω ,
Degger [83]

Answer:

a. I = 0.76 A

b. Z = 150.74

c. RL₁ = 34.41  ,  RL₂ = 602.58

d. RL₂ = 602.58

Explanation:

V₁ = 116 V , R₁ = 77.0 Ω , Vc = 364 V ,  Rc = 473 Ω

a.

Using law of Ohm

V = I * R

I = Vc / Rc =  364 V / 473 Ω

I = 0.76 A

b.

The impedance of the circuit in this case the resistance, capacitance and inductor

V = I * Z

Z = V / I

Z = 116 v / 0.76 A

Z = 150.74

c.

The reactance of the inductor can be find using

Z² = R² + (RL² - Rc²)

Solve to RL'

RL = Rc (+ / -) √ ( Z² - R²)

RL = 473 (+ / -)  √ 150.74² 77.0²

RL = 473 (+ / -)  (129.58)

RL₁ = 34.41  ,  RL₂ = 602.58

d.

The higher value have the less angular frequency  

RL₂ = 602.58

ω = 1 / √L*C

ω = 1 / √ 602.58 * 473

f = 285.02 Hz

6 0
3 years ago
The first stage in the GAS model of stress is
Vladimir [108]
<span>The first stage in the Gas model of stress is alarm and mobilization. So the correct option in regards to the given question is option “d”. Hans Selye is the person that evolved this model and he has explained this model in complete details.  He has broken down his model into three stages. The first stage involves alarm and mobilization. The second stage includes resistance. The third and the final stage include the exhaustion stage. These are the stages that an organism goes through to restore back the balance when stress is exerted from outside. </span>


8 0
3 years ago
A uniform electric field with a magnitude of 5750 N/C points in the positive x direction. Find the change in electric potential
castortr0y [4]

Explanation:

Given that,

Electric field = 5750 N/C

Charge q=+10.5\times10^{-6}\ C

Distance = 5.50 cm

(a). When the charge is moved in the positive x- direction

We need to calculate the change in electric potential energy

Using formula of electric potential energy

\Delta U=-W

\Delta U=-F\cdot d

\Delta U=-q(E\cdot d)

Put the value into the formula

\Delta U=-10.5\times10^{-6}\times5750\times5.50\times10^{-2}

\Delta U=-3.32\times10^{-3}\ J

The change in electric potential energy  is -3.32\times10^{-3}\ J

(b). When the charge is moved in the negative x- direction

We need to calculate the change in electric potential energy

Using formula of electric potential energy

\Delta U=-W

\Delta U=-F\cdot (-d)

\Delta U=-q(E\cdot (-d))

Put the value into the formula

\Delta U=-10.5\times10^{-6}\times5750\times(-5.50\times10^{-2})

\Delta U=3.32\times10^{-3}\ J

The change in electric potential energy  is 3.32\times10^{-3}\ J

Hence, This is the required solution.

3 0
3 years ago
How long would it take a 4,560 watt motor to raise a 166 kg piano to an apartment window
IrinaK [193]

Answer:

Explanation:

We need the power equation here:

P = W/t where W is work and is defined as

W = F*displacement.

Force is a measure in Newtons, which is also weight. We have the mass of the piano, but we need to find the weight:

w = mg so

w = 166(9.8) so

w = 1600N, rounded to the correct number of sig dig. We use that now in the power equation:

4560=\frac{(1600)(15)}{t} and isolating the unknown:

t=\frac{(1600)(15)}{4560} so

t = 5.3 seconds

8 0
3 years ago
Other questions:
  • "If you double the wavelength of a wave on a particular string", what happens to the wave speed v and the frequency f ? (i) v do
    5·2 answers
  • What is the energy in an atoms nucleus
    8·1 answer
  • NEED ASAP PLEASE !!
    5·2 answers
  • Calculate the peak voltage of a generator that rotates its 200-turn, 0.100 m diameter coil at 3600 rpm in a 0.800 T field.
    12·1 answer
  • What type of bond is formed when two or more water molecules interact?
    14·1 answer
  • How are mass and weight different
    14·2 answers
  • 3
    7·1 answer
  • 7. Which phase changes require a gain of energy (heat)?
    9·2 answers
  • A car starts at rest and accelerates at a rate of 4 m/s^2. How far does the car travel in 5
    14·1 answer
  • Metals are used in many products because of the characteristics properties that most metals have. Which product requires the hig
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!