Answer:
The moment of inertia of the system decreases and the angular speed increases.
Explanation:
This very concept might not seem to be interesting at first, but in combination with the law of the conservation of angular momentum, it can be used to describe many fascinating physical phenomena and predict motion in a wide range of situations.
In other words, the moment of inertia for an object describes its resistance to angular acceleration, accounting for the distribution of mass around its axis of rotation.
Therefore, in the course of this action, it is said that the moment of inertia of the system decreases and the angular speed increases.
Answer:

Explanation:
If the weight is a linear function of the amount of fuel, the following correlation is fulfilled :

we solve the equation:

When both particles, the electron and the proton move at the same speed, they may have differences with their de Broglie wavelength, the particle that would have a longer wavelength would be the proton since the wavelength is in direct proportionality with the mass of the particle.
A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
Answer:
detecting and indicating an electric current